伪函数和多线程
struct func
{
//伪函数
void operator()() //方法 可以将对象名当作函数名使用
{
cout << "hello1" << endl;
}
void operator()(int i) //
{
cout << "hello2" <
//void operator()() 对象名 当作函数名 重载()
//()仅使用于当前结构体对象
//mystruct()构造函数 创建一个临时对象 既匿名对象
struct mystruct
{
mystruct()
{
cout << "creat" << endl;
}
~mystruct()
{
cout << "end" << endl;
}
void operator()()
{
MessageBoxA(0,"AABCL","123",0);
}
};
void mainu2()
{
mystruct go1;
thread t1(go1);
mystruct go2;
thread t2(go2);
thread t3(mystruct()); //不适合作为多线程参数 销毁太快
//mystruct()构造函数 创建一个临时对象 既匿名对象
mystruct()();
mystruct*p = new mystruct(); //() 初始化 构造函数
cin.get();
}
成员函数与多线程
struct funx
{
public:
static void run()
{
MessageBoxA(0, "SSSS", "RRRR", 0);
cout << "hello" << endl;
}
static void runl(const char*str)
{
MessageBoxA(0, str, "RRRR", 0);
cout << "hello" << endl;
}
};
void main()
{
//funx *p(nullptr);
// p->run(); //空类指针可以引用没有调用内部成员变量的成员函数
funx fun1;
//&funx::run() 引用成员函数
thread th1(&funx::run(),fun1);
thread th2(&funx::run(), fun1);
thread th3(&funx::runl(), fun1,"DDD"); //传递参数模式
thread th4(&funx::runl(), fun1,"DDD");
cin.get();
}
多线程通信
#include
#include
#include
promise val; //全局通信变量
void mainu4()
{
string str1("12345");
string str2("12345");
string str3(str1+str2); //C++风格字符串
//cout << str3 << endl;
thread th1([]()
{
future fu = val.get_future(); //获取未来的状态
cout << "等待中" << endl;
cout << fu.get() << endl;
});
thread th2([]()
{
system("pause");
val.set_value("HHHHHHHHHHHHHHH");
system("pause");
});
th1.join();
th2.join();
cin.get();
}
线程功能扩展基于继承
class huathread:public thread //C++代码重用继承
{
public:
huathread() :thread() //子类调用父类构造函数
{
}
template //子类调用父类构造函数 ,可变参数的构造
huathread(T&& func, Args&&...args): thread( forward(func), forward(args)... )
{
}
void run(const char*cmd)
{
system(cmd);
}
};
void mainu5()
{
huathread th1([]() {cout << "HHHH" << endl; });
th1.run("calc");
huathread th2([](int num) {cout << "HHHH" << num<
条件变量
#include
#include
//线程通信 结合mutex
//一个线程 多个线程处于等待,通知一个或者多个
mutex m; //线程互相排斥
condition_variable cv; //线程通信
void mainu6()
{
thread **ppth = new thread*[10]; //开辟线程指针数组
for (size_t i = 0; i < 10; i++)
{
ppth[i] = new thread([](int index) {
unique_lock lck(m);//锁定
cv.wait_for(lck,chrono::hours(1000));//一直等待
cout << index << endl; //打印编号
},i); //传递参数
this_thread::sleep_for(chrono::milliseconds(100)); //错开
}
//for (size_t i = 0; i < 10; i++)
//{
// lock_guard lckg(m); //解锁向导
// //cv.notify_one(); //挨个通知
//}
for (size_t i = 0; i < 10; i++)
{
lock_guard lckg(m); //解锁向导
}
cv.notify_all(); //通知全部
for (size_t i = 0; i < 10; i++)
{
ppth[i]->join();
delete ppth[i];
}
delete[] ppth;
cin.get();
}
并行计算 获取结果
#include //线程将来结果
#include //时间
#include
mutex g_m;
void mainu7()
{
auto run = [=](int index) ->int
{
lock_guard lckg(g_m); //加锁
cout << this_thread::get_id() <<" "<< index << endl; //获取线程id
this_thread::sleep_for(chrono::seconds(10));
return index * 1024; //返回结果
};
packaged_task pt1(run);
packaged_task pt2(run); //创建两个任务包
thread t1([&]() {pt1(2);});
thread t2([&]() {pt2(3);}); //开启线程
cout << pt1.get_future().get() << endl;
cout << pt2.get_future().get() << endl; //获取结果
t1.join();
t2.join();
cin.get();
}
vector介绍
//vector 动态数组 无限嵌套
//增删查改,动态的数据结构 线性表的顺序存储
void mainu8()
{
//vector myint{ 1,2,3,4,5 };
//
//for (int i = 10; i < 20; i++)
//{
// myint.push_back(i);
//}
//myint.resize(5); //动态调整大小
//myint.resize(6,90); //vector 6个数据 缓冲90
//cout << myint.front() << endl;
//cout << myint.back() << endl;
//cout << "============================" << endl;
//for (auto i : myint)
//{
// cout << i << endl;
//}
//for (size_t i = 0; i < myint.size(); i++)
//{
// cout << myint[i] <<" "<< myint.at(i) << endl;
//}
////迭代器访问 本质就是指针
//for (auto ib = myint.begin(), ie = myint.end();ib != ie;ib++) //顺序
//{
// cout << *ib << endl;
//}
//for (auto rb = myint.rbegin(), re = myint.rend();rb != re;rb++) //逆序
//{
// cout << *rb << endl;
//}
vector myintx{ 11,12,13,14,15 };
vector myint1{ 1,2,3,4,5 };
//myint1.assign(7,100); //重新初始化
auto it = myint1.begin() + 3;
int a[5]{ 21,22,23,24,25 };
//it = myint1.insert(it,400); //根据位置插入
//cout << "*it:" << *it << endl;
//it = myint1.insert(it, a, a + 5); //插入一个数组
//it = myint1.insert(it,myintx.begin(),myintx.end()); //批量插入
//myint1.erase(it);
myint1.erase(myint1.begin(),myint1.begin()+3); //批量删除 不包含最后一个
vector myint2{ 1,2,3,4,5 };
vector myint3{ 31,32,33,34,35 }; //堆上 不会栈溢出
myint2.swap(myint3);
//for (auto i : myint2)
//{
// cout << i << endl;
//}
//for (int i = 0; i < 5; i++) //内存是连续的
//{
// cout << myint2[i] << " " << &myint2[i] << endl;
//}
vector myint;
int*p = myint.get_allocator().allocate(5); //获取分配器分配内存
cout << myint.size() << endl << endl << endl;
for (size_t i = 0; i < 5; i++)
{
// cout << (p[i] = i) << endl;
}
myint.get_allocator().deallocate(p,5); //释放内存
vector myintx1{ 1,2,3,4,5 };
vector myintx2{ 21,2,3,4,5 ,6,7};
vector myintx3{ 1,2,3 };
vector< vector > myallintx{ myintx1,myintx2,myintx3 };
for (auto i : myallintx)
{
for (auto j : i)
{
cout << j << " ";
}
cout << endl;
}
cin.get();
}
可变参数与多线程
#include
//可变参数
int go(const char*fmt, ...)
{
va_list ap; //指针
va_start(ap, fmt); //开始
vprintf(fmt,ap); //调用
va_end(ap); //结束
return 0;
}
void mainu9()
{
thread th(go, "%sABCD%d______%c_____%x", "12345as", 98, 'c', 256);
cin.get();
}
并行计算结果汇总
#include
#include
#include
#define COUNT 5000000
int add(vector*arr,int start,int count)
{
static mutex m;//只会初始化一次
int sum(0);
for (int i = 0; i < count; i++)
{
sum += (*arr)[start + i];//实现累加
}
{
//显示结果必须 仅仅计算多余 加锁
lock_guard lckg(m); //锁定
cout << " thread:" << this_thread::get_id()
<< " count=" << count
<< " sum=" << sum << endl; //打印结果
}
return sum;
}
void mainu10()
{
vector data(COUNT); //数组
for (int i = 0; i < COUNT; i++)
{
data[i] = (i + 1) % 1000; //0-999
}
vector > result; //结果数组
int cpus = thread::hardware_concurrency(); //CPU核心个数
for (int i = 0; i < cpus*2; i++) //4核CPU 总共创建8个线程任务
{
//线程任务分割
int batch_each = COUNT / (cpus * 2);
if (i == (cpus * 2) - 1)
{
batch_each=COUNT- COUNT / (cpus * 2)*i; //最后一个线程 承担多点
}
//不断压入结果
result.push_back( async(add, &data, i*batch_each,batch_each) ); //
//async返回结果
}
//汇总
int lastresult(0);
for (int i = 0; i < cpus * 2; i++)
{
lastresult += result[i].get(); //汇总结果
}
cout << "lastresult= " << lastresult << endl;
cin.get();
}
死锁与解锁
#include
#define COUNT1 1000000
mutex g_mutex1, g_mutex2; //互斥量
void add1(int*p1,int*p2)
{
for (int i = 0; i < COUNT1; i++)
{
g_mutex1.lock();
(*p1)++;
g_mutex1.unlock();
g_mutex2.lock();
(*p2)++;
g_mutex2.unlock();
}
}
void add2(int*p1, int*p2)
{
for (int i = 0; i < COUNT1; i++)
{
g_mutex2.lock();
(*p2)++;
g_mutex2.unlock();
g_mutex1.lock();
(*p1)++;
g_mutex1.unlock();
}
}
//thread 引用类型函数 模板 避免类型转换 尽量指针 少使用引用
//锁住一个变量 尽快操作完解锁 不要再锁其他变量 否则互锁
void mainu11()
{
int a = 0;
int b = 0;
thread th1(add1, &a, &b);
thread th2(add2, &a, &b);
th1.join();
th2.join();
while (1)
{
cout << a << endl;
cout << b << endl;
this_thread::sleep_for(chrono::seconds(3));
}
cin.get();
}
迅雷线程面试题与线程交换与移动
题目:
//编写一个程序 开启3个线程 这3个线程ID分别为A B C
//每个线程将自己ID在屏幕上打印10遍
//要求输出结构必须按ABC顺序显示: 如ABCABC.....以此类推
#include
#include
#include
int Loop = 10;
int flag = 0;
mutex m;
condition_variable cv;
void fun(int id)
{
for (int i = 0; i < Loop; i++)
{
unique_lock ulk(m); //设定锁定
while ((id-65)!=flag)
{
cv.wait(ulk); //不是该出现的场合 等着
}
cout << (char)id << endl;//转换
flag = (flag + 1) % 4;// 012
cv.notify_all(); //通知全部
}
}
void mainu12()
{
thread t1(fun,65);
thread t2(fun, 66);
thread t3(fun, 67);
thread t4(fun, 68);
t1.join();
t2.join();
t3.join();
t4.join();
cin.get();
}
线程交换与移动
void mainu13()
{
//thread t1([]() {cout << "FFFFFFF" << endl;});
//thread t2([]() {cout << "HHHHHHH" << endl;});
//cout << "t1 id:" < 100000000) break;
}
cout << i << endl;
system("pause");
});
//t1.join();
cout << t1.get_id() << endl;
thread t2 = move(t1); //线程移动 t2具备t1的属性
cout << t1.get_id() << endl;
cout << t2.get_id() << endl;
t2.join();
cin.get();
}
unique_lock与lock_guard
#include
mutex g_mutex; //全局互斥量
#define N 1000000
void add(int*p)
{
for (int i = 0; i < N; i++)
{
unique_lockulk(g_mutex);// 自动加锁 自动解锁 根据块语句锁定
//根据mutex属性 是否可以加锁
lock_guardlgd(g_mutex); //拥有mutex所有权 锁定向导 自动加锁 自动解锁
//读取失败的情况下就一直等待
(*p)++;
}
}
void mainu14()
{
int a = 0;
thread t1(add,&a);
thread t2(add, &a);
t1.join();
t2.join();
cout << a << endl;
cin.get();
}
等待固定时间
#include
#include
#include
#include
condition_variable cv;
mutex m;
bool done=false;
void run()
{
auto start = chrono::high_resolution_clock::now(); //当前时间
auto end =start + chrono::seconds(10);
unique_lock lk(m);
while (!done)
{
if (cv.wait_until(lk, end) == cv_status::timeout) //超过时间
{
done = true;
break;
}
}
//this_thread::sleep_until(end);
system("pause");
}
void mainu15()
{
//thread t1(run);
time_t t1, t2;
auto start = chrono::high_resolution_clock::now(); //当前时间
t1 = time(&t1);
double db = 0;
for (int i = 0; i < 10000000; i++)
{
db += i;
}
t2 = time(&t2);
auto end = start + chrono::milliseconds(5000);
cout <<(end - start).count() << endl; //精确度高
cout << difftime(t2 , t1) << endl; //精确度低
//this_thread::sleep_until(end); //线程等待不用sleep_until
cin.get();
}
生产者 消费者
//生产不允许读取 读取不允许生产
#include
#include
#include
#include
mutex m;
condition_variable isfull, isempty; //处理两种情况
bool flag = true; //标志 消费完了退出
vector myint;
void put(int num) //生产者
{
for (int i = 0; i < num; i++)
{
unique_lock lk(m);//锁定
while (myint.size()>=10)
{
isempty.wait(lk); //满了一直等待
}
myint.push_back(i);//插入
cout << "生产" << i << endl;
isfull.notify_all(); //通知消费者
}
this_thread::sleep_for(chrono::seconds(5)); //休眠
flag = false;
}
void take() //消费者
{
while (flag)
{
unique_lock lk(m);//锁定
while (myint.size()==0)
{
isfull.wait(lk); //等待
}
if(flag)
{
cout <<"消费:"<< myint[myint.size() - 1] << " "< myint{ 1,2,3,4,5 };
myint.pop_back(); //删除尾部
myint.push_back(19);
for (auto i: myint)
{
cout << i << endl;
}
thread t1(take);
thread t2(take);
thread t3(take);
put(100);
thread s1(put,15);
thread s2(put,10);
t1.join();
t2.join();
t3.join();
cin.get();
}