本文首发于我的博客:gongyanli.com
参考视频:莫烦的numpy视频/
前言:和pandas一样,numpy曾经也一起看得,还是忘记了。还是推荐那个视频,短小上手快。我写的东西有时候我会进行更新,所以有些写好的内容,后面也可能会加新内容,所以大家不要见怪啊。因为一般写东西numpy在前pandas在后,但是我好像是反着的,所以这个前言是我后来加的。因为强迫症的我,一篇文章有了前言,就觉得每篇都该有。
一、安装
windows:pip install numpy(anaconda下)
mac:pip install numpy
linux:pip install numpy
二、导入
import numpy as np
三、Numpy属性
ndim:维度
shape:行数和列数
size:元素个数
四、Numpy--创建array
array:创建数组
dtype:指定数据类型
zeros:创建数据全为0
ones:创建数据全为1
empty:创建数据接近0
arrange:按指定范围创建数据
linspace:创建线段
a = np.array([2,23,4]) # list 1d
print(a)
# [2 23 4]
a = np.array([2,23,4],dtype=np.int) # np.int32/float/float32
print(a.dtype)
# int 64
a = np.array([[2,23,4],[2,32,4]]) # 2d 矩阵 2行3列
print(a)
"""
[[ 2 23 4]
[ 2 32 4]]
"""
a = np.zeros((3,4)) # 数据全为0,3行4列
"""
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
"""
a = np.ones((3,4),dtype = np.int) # 数据为1,3行4列
"""
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
"""
a = np.empty((3,4)) # 数据为empty,3行4列
"""
array([[ 0.00000000e+000, 4.94065646e-324, 9.88131292e-324,
1.48219694e-323],
[ 1.97626258e-323, 2.47032823e-323, 2.96439388e-323,
3.45845952e-323],
[ 3.95252517e-323, 4.44659081e-323, 4.94065646e-323,
5.43472210e-323]])
"""
a = np.arange(10,20,2) # 10-19 的数据,2步长
"""
array([10, 12, 14, 16, 18])
"""
a = np.arange(12).reshape((3,4)) # 3行4列,0到11
"""
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"""
a = np.linspace(1,10,20) # 开始端1,结束端10,且分割成20个数据,生成线段
"""
array([ 1. , 1.47368421, 1.94736842, 2.42105263,
2.89473684, 3.36842105, 3.84210526, 4.31578947,
4.78947368, 5.26315789, 5.73684211, 6.21052632,
6.68421053, 7.15789474, 7.63157895, 8.10526316,
8.57894737, 9.05263158, 9.52631579, 10. ])
"""
a = np.linspace(1,10,20).reshape((5,4)) # 更改shape
"""
array([[ 1. , 1.47368421, 1.94736842, 2.42105263],
[ 2.89473684, 3.36842105, 3.84210526, 4.31578947],
[ 4.78947368, 5.26315789, 5.73684211, 6.21052632],
[ 6.68421053, 7.15789474, 7.63157895, 8.10526316],
[ 8.57894737, 9.05263158, 9.52631579, 10. ]])
"""
五、Numpy--基础运算
a=np.array([10,20,30,40]) # array([10, 20, 30, 40])
b=np.arange(4) # array([0, 1, 2, 3])
c=a-b # array([10, 19, 28, 37])
c=a+b # array([10, 21, 32, 43])
c=a*b # array([ 0, 20, 60, 120])
c=b**2 # array([0, 1, 4, 9]) # 二次方
c=10*np.sin(a)
# array([-5.44021111, 9.12945251, -9.88031624, 7.4511316 ])
print(b<3)
# array([ True, True, True, False], dtype=bool)
a=np.array([[1,1],[0,1]])
b=np.arange(4).reshape((2,2))
print(a)
# array([[1, 1],
# [0, 1]])
print(b)
# array([[0, 1],
# [2, 3]])
c_dot = np.dot(a,b)
# array([[2, 4],
# [2, 3]])
c_dot_2 = a.dot(b)
# array([[2, 4],
# [2, 3]])
a=np.random.random((2,4))
print(a)
# array([[ 0.94692159, 0.20821798, 0.35339414, 0.2805278 ],
# [ 0.04836775, 0.04023552, 0.44091941, 0.21665268]])
np.sum(a) # 4.4043622002745959
np.min(a) # 0.23651223533671784
np.max(a) # 0.90438450240606416
print("sum =",np.sum(a,axis=1))
# sum = [ 1.96877324 2.43558896]
print("min =",np.min(a,axis=0))
# min = [ 0.23651224 0.41900661 0.36603285 0.46456022]
print("max =",np.max(a,axis=1))
# max = [ 0.84869417 0.9043845 ]
A = np.arange(2,14).reshape((3,4))
# array([[ 2, 3, 4, 5]
# [ 6, 7, 8, 9]
# [10,11,12,13]])
print(np.argmin(A)) # 0
print(np.argmax(A)) # 11
print(np.mean(A)) # 7.5
print(np.average(A)) # 7.5
print(A.mean()) # 7.5
print(A.median()) # 7.5
print(np.cumsum(A))
# [2 5 9 14 20 27 35 44 54 65 77 90]
print(np.diff(A))
# [[1 1 1]
# [1 1 1]
# [1 1 1]]
print(np.nonzero(A))
# (array([0,0,0,0,1,1,1,1,2,2,2,2]),array([0,1,2,3,0,1,2,3,0,1,2,3]))
A = np.arange(14,2, -1).reshape((3,4))
# array([[14, 13, 12, 11],
# [10, 9, 8, 7],
# [ 6, 5, 4, 3]])
print(np.sort(A))
# array([[11,12,13,14]
# [ 7, 8, 9,10]
# [ 3, 4, 5, 6]])
print(np.transpose(A))
print(A.T)
# array([[14,10, 6]
# [13, 9, 5]
# [12, 8, 4]
# [11, 7, 3]])
# array([[14,10, 6]
# [13, 9, 5]
# [12, 8, 4]
# [11, 7, 3]])
print(A)
# array([[14,13,12,11]
# [10, 9, 8, 7]
# [ 6, 5, 4, 3]])
print(np.clip(A,5,9))
# array([[ 9, 9, 9, 9]
# [ 9, 9, 8, 7]
# [ 6, 5, 5, 5]])
六、Numpy--索引
A = np.arange(3,15)
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
print(A[3]) # 6
A = np.arange(3,15).reshape((3,4))
"""
array([[ 3, 4, 5, 6]
[ 7, 8, 9, 10]
[11, 12, 13, 14]])
"""
print(A[2])
# [11 12 13 14]
print(A[1][1]) # 8
print(A[1, 1]) # 8
print(A[1, 1:3]) # [8 9]
for row in A:
print(row)
"""
[ 3, 4, 5, 6]
[ 7, 8, 9, 10]
[11, 12, 13, 14]
"""
for column in A.T:
print(column)
"""
[ 3, 7, 11]
[ 4, 8, 12]
[ 5, 9, 13]
[ 6, 10, 14]
"""
A = np.arange(3,15).reshape((3,4))
print(A.flatten())
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
for item in A.flat:
print(item)
# 3
# 4
……
# 14
七、Numpy--array合并
np.vstack()
A = np.array([1,1,1])
B = np.array([2,2,2])
print(np.vstack((A,B))) # vertical stack
"""
[[1,1,1]
[2,2,2]]
"""
C = np.vstack((A,B))
print(A.shape,C.shape)
# (3,) (2,3)
np.hstack()
D = np.hstack((A,B)) # horizontal stack
print(D)
# [1,1,1,2,2,2]
print(A.shape,D.shape)
# (3,) (6,)
np.newaxis()
print(A[np.newaxis,:])
# [[1 1 1]]
print(A[np.newaxis,:].shape)
# (1,3)
print(A[:,np.newaxis])
"""
[[1]
[1]
[1]]
"""
print(A[:,np.newaxis].shape)
# (3,1)
A = np.array([1,1,1])[:,np.newaxis]
B = np.array([2,2,2])[:,np.newaxis]
C = np.vstack((A,B)) # vertical stack
D = np.hstack((A,B)) # horizontal stack
print(D)
"""
[[1 2]
[1 2]
[1 2]]
"""
print(A.shape,D.shape)
# (3,1) (3,2)
np.concatenate()
C = np.concatenate((A,B,B,A),axis=0)
print(C)
"""
array([[1],
[1],
[1],
[2],
[2],
[2],
[2],
[2],
[2],
[1],
[1],
[1]])
"""
D = np.concatenate((A,B,B,A),axis=1)
print(D)
"""
array([[1, 2, 2, 1],
[1, 2, 2, 1],
[1, 2, 2, 1]])
"""
八、Numpy--array分割
A = np.arange(12).reshape((3, 4))
print(A)
"""
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"""
print(np.split(A, 2, axis=1)) #从左往右分割,纵向分割
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
"""
print(np.split(A, 3, axis=0)) #从上往下分割,横向分割
# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
print(np.array_split(A, 3, axis=1)) #不等量分割
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
"""
print(np.vsplit(A, 3)) #等于 print(np.split(A, 3, axis=0))
# [array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
print(np.hsplit(A, 2)) #等于 print(np.split(A, 2, axis=1))
"""
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
八、Numpy--copy and deep copy
a = np.arange(4)
# array([0, 1, 2, 3])
b = a
c = a
d = b
# a、b、c、d中只要任何一个数组的元素发生变化,与之相等的元素会随之变化
b=a.copy()
# 当a发生变化时,b不会随之发生变化