在 HashMap 基础上维护一条双向链表
支持遍历时会按照插入顺序有序进行迭代。LinkedHashMap 的迭代顺序是和插入顺序一致的,这一点是 HashMap 所不具备的。
。支持按照元素访问顺序排序,适用于封装 LRU 缓存工具。
因为内部使用双向链表维护各个节点,所以遍历时的效率和元素个数成正比,相较于和容量成正比的 HashMap 来说,迭代效率会高很多。
在 HashMap 基础上在各个节点之间维护一条双向链表,使得原本散列在不同 bucket 上的节点、链表、红黑树有序关联起来。
通过 LinkedHashMap 我们可以封装一个简易版的 LRU(Least Recently Used,最近最少使用) 缓存,确保当存放的元素超过容器容量时,将最近最少访问的元素移除。
具体实现思路如下:
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75f, true);
this.capacity = capacity;
}
/**
* 判断size超过容量时返回true,告知LinkedHashMap移除最老的缓存项(即链表的第一个元素)
*/
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > capacity;
}
}
我们都知道 LinkedHashMap 是在 HashMap 基础上对节点增加双向指针实现双向链表的特性,所以 LinkedHashMap 内部链表转红黑树时,对应的节点会转为树节点 TreeNode,为了保证使用 LinkedHashMap 时树节点具备双向链表的特性,所以树节点 TreeNode 需要继承 LinkedHashMap 的 Entry。
我们直接在 HashMap 的节点 Node 上直接实现前驱和后继指针,然后 TreeNode 直接继承 Node 获取双向链表的特性为什么不行呢?其实这样做也是可以的。只不过这种做法会使得使用 HashMap 时存储键值对的节点类 Node 多了两个没有必要的引用,占用没必要的内存空间
如果我们要让 LinkedHashMap 实现键值对按照访问顺序排序(即将最近未访问的元素排在链表首部、最近访问的元素移动到链表尾部),需要调用第 4 个构造方法将 accessOrder 设置为 true。
public V get(Object key) {
Node < K, V > e;
//获取key的键值对,若为空直接返回
if ((e = getNode(hash(key), key)) == null)
return null;
//若accessOrder为true,则调用afterNodeAccess将当前元素移到链表末尾
if (accessOrder)
afterNodeAccess(e);
//返回键值对的值
return e.value;
}
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
void afterNodeRemoval(Node<K,V> e) { // unlink
//获取当前节点p、以及e的前驱节点b和后继节点a
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//将p的前驱和后继指针都设置为null,使其和前驱、后继节点断开联系
p.before = p.after = null;
//如果前驱节点为空,则说明当前节点p是链表首节点,让head指针指向后继节点a即可
if (b == null)
head = a;
else
//如果前驱节点b不为空,则让b直接指向后继节点a
b.after = a;
//如果后继节点为空,则说明当前节点p在链表末端,所以直接让tail指针指向前驱节点a即可
if (a == null)
tail = b;
else
//反之后继节点的前驱指针直接指向前驱节点
a.before = b;
}
从源码可以看出, afterNodeRemoval 方法的整体操作就是让当前节点 p 和前驱节点、后继节点断开联系,等待 gc 回收
为了维护双向链表访问的有序性,它做了这样两件事:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
//如果evict为true且队首元素不为空以及removeEldestEntry返回true,则说明我们需要最老的元素(即在链表首部的元素)移除。
if (evict && (first = head) != null && removeEldestEntry(first)) {
//获取链表首部的键值对的key
K key = first.key;
//调用removeNode将元素从HashMap的bucket中移除,并和LinkedHashMap的双向链表断开,等待gc回收
removeNode(hash(key), key, null, false, true);
}
}
final class EntryIterator extends HashIterator
implements Iterator < Map.Entry < K, V >> {
public final Map.Entry < K,
V > next() {
return nextNode();
}
}
//获取下一个Node
final Node < K, V > nextNode() {
Node < K, V > [] t;
//获取下一个元素next
Node < K, V > e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
//将next指向bucket中下一个不为空的Node
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}
final class LinkedEntryIterator extends LinkedHashIterator
implements Iterator < Map.Entry < K, V >> {
public final Map.Entry < K,
V > next() {
return nextNode();
}
}
//获取下一个Node
final LinkedHashMap.Entry < K, V > nextNode() {
//获取下一个节点next
LinkedHashMap.Entry < K, V > e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
//current 指针指向当前节点
current = e;
//next直接当前节点的after指针快速定位到下一个节点
next = e.after;
return e;
}
LinkedHashMap 维护了一个双向链表来记录数据插入的顺序,因此在迭代遍历生成的迭代器的时候,是按照双向链表的路径进行遍历的。这一点相比于 HashMap 那种遍历整个 bucket 的方式来说,高效许多。这一点我们可以从两者的迭代器中得以印证,先来看看 HashMap 的迭代器,可以看到 HashMap 迭代键值对时会用到一个 nextNode 方法,该方法会返回 next 指向的下一个元素,并会从 next 开始遍历 bucket 找到下一个 bucket 中不为空的元素 Node。相比之下 LinkedHashMap 的迭代器则是直接使用通过 after 指针快速定位到当前节点的后继节点,简洁高效许多。
LinkedHashMap 需要维护双向链表的缘故,插入元素相较于 HashMap 会更耗时,但是有了双向链表明确的前后节点关系,迭代效率相对于前者高效了许多。
LinkedHashMap 是 Java 集合框架中 HashMap 的一个子类,它继承了 HashMap 的所有属性和方法,并且在 HashMap 的基础重写了 afterNodeRemoval、afterNodeInsertion、afterNodeAccess 方法。使之拥有顺序插入和访问有序的特性。
LinkedHashMap 按照插入顺序迭代元素是它的默认行为。LinkedHashMap 内部维护了一个双向链表,用于记录元素的插入顺序。因此,当使用迭代器迭代元素时,元素的顺序与它们最初插入的顺序相同。
LinkedHashMap 可以通过构造函数中的 accessOrder 参数指定按照访问顺序迭代元素。当 accessOrder 为 true 时,每次访问一个元素时,该元素会被移动到链表的末尾,因此下次访问该元素时,它就会成为链表中的最后一个元素,从而实现按照访问顺序迭代元素。
将 accessOrder 设置为 true 并重写 removeEldestEntry 方法当链表大小超过容量时返回 true,使得每次访问一个元素时,该元素会被移动到链表的末尾。一旦插入操作让 removeEldestEntry 返回 true 时,视为缓存已满,LinkedHashMap 就会将链表首元素移除,由此我们就能实现一个 LRU 缓存。
LinkedHashMap 和 HashMap 都是 Java 集合框架中的 Map 接口的实现类。它们的最大区别在于迭代元素的顺序。HashMap 迭代元素的顺序是不确定的,而 LinkedHashMap 提供了按照插入顺序或访问顺序迭代元素的功能。此外,LinkedHashMap 内部维护了一个双向链表,用于记录元素的插入顺序或访问顺序,而 HashMap 则没有这个链表。因此,LinkedHashMap 的插入性能可能会比 HashMap 略低,但它提供了更多的功能并且迭代效率相较于 HashMap 更加高效。
如有问题,欢迎指正!