【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)

本文章代码以c++为例!

一、力扣第77题:组合

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第1张图片

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第2张图片 

思路

本题是回溯法的经典题目。

直接的解法当然是使用for循环,例如示例中k为2,很容易想到 用两个for循环,这样就可以输出 和示例中一样的结果。

代码如下:

int n = 4;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        cout << i << " " << j << endl;
    }
}

输入:n = 100, k = 3 那么就三层for循环,代码如下:

int n = 100;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        for (int u = j + 1; u <= n; n++) {
            cout << i << " " << j << " " << u << endl;
        }
    }
}

如果n为100,k为50呢,那就50层for循环,是不是开始窒息

此时就会发现虽然想暴力搜索,但是用for循环嵌套连暴力都写不出来!

咋整?

回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。

那么回溯法怎么暴力搜呢?

上面我们说了要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。

一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!

如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。

我们在关于回溯算法,你该了解这些!

(opens new window)中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

那么我把组合问题抽象为如下树形结构:

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第3张图片

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在关于回溯算法,你该了解这些!

(opens new window)中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。

# 回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

vector> result; // 存放符合条件结果的集合
vector path; // 用来存放符合条件结果

其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

为什么要有这个startIndex呢?

建议在77.组合视频讲解

(opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第4张图片

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

vector> result; // 存放符合条件结果的集合
vector path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)
  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第5张图片

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

if (path.size() == k) {
    result.push_back(path);
    return;
}
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第6张图片

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
    path.push_back(i); // 处理节点
    backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
    path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

关键地方都讲完了,组合问题C++完整代码如下:

class Solution {
private:
    vector> result; // 存放符合条件结果的集合
    vector path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector> combine(int n, int k) {
        result.clear(); // 可以不写
        path.clear();   // 可以不写
        backtracking(n, k, 1);
        return result;
    }
};
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

还记得我们在关于回溯算法,你该了解这些!

(opens new window)中给出的回溯法模板么?

如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

对比一下本题的代码,是不是发现有点像! 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。

# 总结

组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。

从而引出了回溯法就是解决这种k层for循环嵌套的问题。

然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。

接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

# 剪枝优化

我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {
    path.push_back(i);
    backtracking(n, k, i + 1);
    path.pop_back();
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

【LeetCode题目详解】第七章 回溯算法part01 77. 组合(day24补)_第7张图片

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

class Solution {
private:
    vector> result;
    vector path;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1);
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:

    vector> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

# 剪枝总结

本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。

所以我依然是把整个回溯过程抽象为一棵树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。

 day24补

你可能感兴趣的:(算法,c++,数据结构)