- Python 爬虫实战:国际航班数据抓取与全球航班网络分析
西攻城狮北
python爬虫开发语言
一、引言随着全球化的加速,国际航班网络已成为现代交通体系的重要组成部分。通过分析国际航班数据,我们可以深入了解全球航空枢纽、热门航线以及航班流量的变化趋势。本文将介绍如何通过爬取国际航班数据,分析全球航班网络的情况,并给出实现爬虫和数据分析的详细过程及代码。二、项目背景与目标2.1项目背景航空交通是全球经济和旅游业的核心部分,了解全球航班网络有助于掌握各大航空公司之间的竞争格局、全球机场的枢纽作用
- ThreeJs中使用lil-gui无法改变其所属父元素
一只程序熊
前端3d
项目场景:之前一直在研究Threejs,遇到一个很头疼的问题!就是我自己使用了Vite+V3创建了一个项目框架,用来记录自己学习Three的一个过程,但是里面就存在了一个问题,我们在newGUI()后不能改变其父级元素,就像默认父级元素在body上一样问题描述GUI父级元素无法被改变letgui=newGUI()原因分析:正好这段时间有空,本主就疯狂去找了lil-gui的官方文档,还好作者是个好人
- 二叉树中两个节点最近公共祖先的查找算法研究
cloudman08
深度优先算法
目录摘要一、引言二、问题定义三、问题分析3.1二叉树的特性利用3.2暴力搜索的不足四、算法设计4.1递归算法(适用于普通二叉树)4.2迭代算法(适用于二叉搜索树)4.3代码实现(Python)4.4代码解释五、复杂度分析5.1递归算法复杂度(普通二叉树)5.2迭代算法复杂度(二叉搜索树)六、实际应用6.1文件系统目录结构6.2遗传算法中的基因树分析6.3数据库索引结构优化七、结论摘要在二叉树相关算
- 透视B/S架构与C/S架构:构建未来网络应用的智慧选择
无限大.
杂谈架构
透视B/S架构与C/S架构:构建未来网络应用的智慧选择在信息技术迅猛发展的今天,网络架构的选择对企业和开发者来说至关重要。B/S架构(Browser/Server)与C/S架构(Client/Server)是两种主流的架构模式,各自具有独特的优势与适用场景。随着技术的不断发展,B/S架构逐渐取代C/S架构成为主流选择。接下来,我将深入探讨这两种架构,并分析B/S架构为何能够占据主导地位。一、什么是
- 现代游戏UI架构深度解析——以UIController为核心的模块化界面管理系统
晴空了无痕
项目框架游戏ui架构
一、架构全景与设计哲学本文将以重构后的UIController为核心,深入探讨Unity引擎下的高效UI管理方案。该体系采用"分层-分治"设计理念,通过界面生命周期管理、动态适配策略、资源优化机制三个维度的协同工作,构建了适应复杂交互需求的弹性UI框架。我们将从以下关键维度展开技术分析:二、核心模块技术解析2.1中枢控制器(UIController)namespaceGameCore.Interf
- 如何自己做奶茶,从此告别奶茶店
wmq163
生活奶茶生活
自制大白兔奶茶,奶香与茶香激情碰撞,每一口都是香浓与甜蜜的双重诱惑,好喝到跺脚!丝滑口感在舌尖舞动,仿佛味蕾在开派对。简单几步就能复刻,成本超低,轻松在家享受奶茶自由。材料:大白兔奶糖,红茶叶,牛奶做法:锅里加入适量的水,放入奶糖和茶叶小火炒至奶糖融化,再加入牛奶搅拌均匀倒出过滤就完成啦。(水15ml,茶叶5g,牛奶400ml左右,大家可根据个人口味加入适量的材料)
- Deepseek-R1大模型微调实战技术深度解析
大势下的牛马
搭建本地gptDeepseek大模型评测微调
一、Deepseek-R1架构特性与微调适配性分析1.1核心架构创新对微调的影响Deepseek-R1基于Deepseek-V3-Base架构,通过MoE(Mixture-of-Experts)与MLA(Multi-HeadLatentAttention)的协同设计,实现了参数规模与计算效率的平衡。其6710亿参数总量中,每个token仅激活37B参数的机制,使得微调过程中可针对不同任务动态调整专
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- Nature:你的大脑衰老速度受这64个基因影响
量子位
你的大脑衰老速度,原来受这64个基因影响!事情是这样的。根据Nature最新报道,科学家们通过利用AI模型分析大量脑部扫描和遗传数据,确定了64个影响大脑衰老速度的基因,并指出了13种潜在的抗衰老药物。相关研究发表在最新一期Science子刊《ScienceAdvances》上。按照Nature的评价,这是尝试确定影响器官衰退遗传因素这一研究领域里:迄今为止规模最大的一次尝试都柏林圣三一学院的神经
- 边缘设备模型量化部署:TFLite INT8校准实现细节深度解析
燃灯工作室
Ai人工智能机器学习
一、技术原理与数学公式INT8量化的核心是通过线性映射将浮点数值范围([-max,max])映射到8位整数范围([-128,127])。校准过程通过分析真实数据分布确定最优缩放因子(scale)和零点(zeropoint):量化公式:Q=round(float_valuescale)+zero_pointQ=round(\frac{float\_value}{scale})+zero\_point
- 软件测试之测试用例详细解读
隐居人家的炊烟
测试用例软件测试自动化测试
一、通用测试用例八要素1、用例编号;2、测试项目;3、测试标题;4、重要级别;5、预置条件;6、测试输入;7、操作步骤;8、预期输出二、具体分析通用测试用例八要素1、用例编号一般是数字和字符组合成的字符串,可以包括(下划线、单词缩写、数字等等),但是需要注意的是,尽量不要写汉语拼音,因为拼音的意义可能有好几种,有可能会导致乱码;用例编号具有唯一性和易识别性。(比如说我们唯一标识一个人:中国-上海市
- 不知道天气咋样?一起用Python爬取天气数据分析告诉你
Dragon少年
Pythonpython爬虫图表可视化
前言今天我们分享一个小案例,获取天气数据,进行可视化分析,带你直观了解天气情况!一、核心功能设计总体来说,我们需要先对中国天气网中的天气数据进行爬取,保存为csv文件,并将这些数据进行可视化分析展示。拆解需求,大致可以整理出我们需要分为以下几步完成:通过爬虫获取中国天气网7.20-7.21的降雨数据,包括城市,风力方向,风级,降水量,相对湿度,空气质量。对获取的天气数据进行预处理,分析河南的风力等
- 虚拟机中Hadoop集群NameNode进程缺失问题解析与解决
申朝先生
hadoop大数据分布式linux
目录问题概述问题分析解决办法总结问题概述在虚拟机中运行Hadoop集群时,通过执行jps命令检查进程时,发现NameNode进程缺失。这通常会导致Hadoop集群无法正常运行,影响数据的存储和访问。问题分析导致NameNode进程缺失的原因可能有以下几点:集群未正确停止:在关闭虚拟机或重启Hadoop集群之前,未执行stop-all.sh命令正确停止集群,导致Hadoop服务异常退出,留下残留数据
- Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践在股市中,信息的力量是巨大的。一条新闻、一篇报道,甚至一条推文,都可能引发股价的波动。因此,利用自然语言处理(NLP)技术来分析股票新闻的情感倾向,可以帮助我们预测市场动向,从而做出更明智的投资决策。本文将带你了解如何开发和优化一个基于Pytho
- 基于热力梯度的线圈设计用来更替新型的储能方式
热爱电气
数学建模
摘要研究背景:传统电磁储能技术受限于较低的能量密度(约1-5Wh/kg)和充放电速度。热力梯度储能技术通过调控温度场实现多模式能量转换,其潜力能量密度可达100Wh/kg以上。创新点:1.提出三层异质线圈结构(铜基主储层+Bi₂Te₃热电转换层+GdFeO₃磁热调谐层),实现温度梯度与磁场的协同调控。2.开发动态热-电-磁耦合模型,结合有限元分析(COMSOL)与机器学习算法(遗传算法优化参数)。
- 股票交易中的技术分析和基本面分析有哪些区别?
股票量化
量化投资量化交易程序化交易量化交易python量化炒股券商接口QMT量化投资PTrade
推荐阅读:《【最全攻略】券商交易接口API申请:从数据获取到下单执行》股票交易中的技术分析和基本面分析有哪些区别?在股票市场中,投资者通常会采用两种主要的分析方法来指导他们的交易决策:技术分析和基本面分析。这两种方法各有特点,适用于不同的投资风格和市场环境。本文将深入探讨这两种分析方法的区别,帮助投资者更好地理解它们,并在实际交易中做出明智的选择。技术分析:图表和模式的艺术技术分析是一种通过分析历
- Python 爬虫实战:于好大夫在线抓取医生评价数据,选择优质医疗服务
西攻城狮北
python爬虫实战案例好大夫在线
目录引言一、爬虫基础预备知识1.1爬虫的基本概念1.2必备库介绍二、抓取医生评价数据2.1目标网站分析2.2发送HTTP请求2.3解析网页内容2.4保存数据三、数据分析与可视化3.1数据清洗3.2数据分析3.3数据可视化四、选择优质医疗服务4.1选择标准4.2推荐医生4.3分享推荐五、总结与展望5.1总结5.2展望引言在当今医疗信息爆炸的时代,选择一位合适的医生对于患者来说至关重要。好大夫在线是一
- Python如何快速计算技术指标的金叉死叉?
量化问财
量化软件QMT量化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
推荐阅读:《【最全攻略】免费的量化软件有哪些?券商的交易接口怎么获取?》引言在股票市场中,技术分析是一种重要的工具,它可以帮助投资者识别市场趋势和潜在的买卖点。技术指标金叉死叉是技术分析中常用的一种方法,它涉及到两个移动平均线(MA)的交叉点。金叉是指短期移动平均线从下方穿过长期移动平均线,通常被视为买入信号;而死叉则是短期移动平均线从上方穿过长期移动平均线,通常被视为卖出信号。本文将介绍如何使用
- Python 爬虫实战:科学知识收集网站构建
西攻城狮北
python爬虫开发语言
一、引言在信息爆炸的时代,科学知识的收集与整理变得尤为重要。通过构建一个科学知识收集网站,我们可以高效地获取、整理和展示各类科学知识,为科研人员、学生以及科学爱好者提供便利。本文将详细介绍如何使用Python爬虫技术构建这样一个网站,涵盖从目标网站分析到数据存储与展示的完整流程。二、目标网站分析选择一个合适的科学知识网站作为数据源是构建收集网站的第一步。以中国科学院(http://www.cas.
- JavaScript性能优化实战:从8s到0.8s的极致提升
小诸葛IT课堂
前端
摘要:页面卡顿、内存泄漏、CPU爆满?本文通过6个真实场景+可运行代码示例,手把手教你掌握JS性能优化核心技术!涵盖防抖节流、虚拟滚动、WebWorkers、内存泄漏排查等高频痛点解决方案,最后提供Chrome性能分析工具实战指南,助你打造丝滑的Web应用!一、性能优化核心指标(先量化再优化)1.1关键性能指标FPS:帧率≥60为合格(开发者工具Performance面板)内
- OpenCV 深度学习模块 cv2.dnn 与其他深度学习框架的优缺点对比及适用场景
白.夜
深度学习opencv
OpenCV提供了一个深度学习模块cv2.dnn,让开发者能够在计算机视觉项目中轻松加载和推理深度学习模型。相比于TensorFlow、PyTorch等其他深度学习框架,cv2.dnn有其独特的优点与缺点,适用于不同的应用场景。在这篇文章中,我们将详细分析cv2.dnn的优缺点,并讨论它的适用场景。一、cv2.dnn的优点1.简单易用cv2.dnn提供了一个相对简单且易于使用的接口,适合已经在使用
- Kafka 生产者与消费者的关系与应用场景分析
白.夜
kafkajson
在现代分布式系统中,ApacheKafka作为一个高性能的消息队列系统,在数据流转和处理方面扮演着至关重要的角色。Kafka采用了经典的生产者-消费者模式,极大地解耦了数据生成与数据消费的过程。本文将详细探讨Kafka中生产者与消费者的关系、常见问题以及Kafka在实际应用中的使用场景。1.Kafka中生产者与消费者的关系1.1生产者(Producer)生产者是Kafka系统中的一个客户端应用程序
- TDengine 使用教程:从入门到实践
遇见伯灵说
tdengine大数据时序数据库
TDengine是一款专为物联网(IoT)和大数据实时分析设计的时序数据库。它能够高效地处理海量的时序数据,并提供低延迟、高吞吐量的性能表现。在本文中,我们将带领大家从TDengine的安装、基本操作到一些高级功能,帮助你快速上手。1.TDengine简介TDengine是一个高效的时序数据存储解决方案,支持高并发写入和快速的实时分析。它适用于各种物联网应用场景,如传感器数据监控、日志数据处理等。
- 第三十个问题-讲讲Agent、MCP、OpenAI Responses API
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
1.Agent(智能体)136定义与核心功能Agent是什么:能够自主执行复杂任务的智能实体,通常基于大语言模型(LLM)构建,配备指令和工具,可独立完成多步骤任务(如网络搜索、文件处理、自动化操作等)18。应用场景:客服自动化、法律文档检索、代码审查、数据输入、股票分析等36。OpenAI的Agent生态:DeepResearch:自动生成带引用的研究报告。Operator:通过控制浏览器光标执
- 【前端拓展】Canvas性能革命!WebGPU + WebAssembly混合渲染方案深度解析
爱上大树的小猪
前端js
为什么需要混合方案?真实场景痛点分析:传统WebGL在高频数据更新时存在CPU-GPU通信瓶颈JavaScript的垃圾回收机制导致渲染卡顿复杂物理模拟(如SPH流体)难以在单线程中实现技术选型对比:graphLRA[计算密集型任务]-->B[WebAssembly]C[图形渲染任务]-->D[WebGPU]B-->E[共享内存]D-->E️环境搭建全流程1.WebGPU环境配置#启用Chrome
- C语言 第四章 数组(4)
点纭
c语言算法c#开发语言
目录多维数组理解举例:二维数组的定义方式定义方式1:定义方式2:二维数组的内存分析成员的调用举例代码示例1代码示例2代码示例3多维数组理解二维数组、三维数组、...都称为多维数组。本节主要讲解二维数组,三维及以上的数组,以此类推即可。举例:公司有3个攻坚小分队,每队有6名同事,要把这些同事的工资用数组保存起来以备查看。队员1队员2队员3队员4队员5队员6第一分队100001100012000130
- 大模型在招聘场景下的应用
IT猫仔
人工智能ai学习
大模型在招聘场景下的应用具有广泛的可能性。一、简历自动化筛选与匹配应用:大模型能够自动分析大量简历,根据职位要求筛选出合适的候选人,并按匹配度排序。Prompt写法:请对以下简历进行筛选,找出符合【职位名称】职位要求的候选人。职位要求包括【具体要求】。请提供筛选结果,并按照匹配度从高到低排序。举例:请对以下简历进行筛选,找出符合“产品经理”职位要求的候选人。职位要求包括具备3年以上产品经验、熟悉用
- DeepSeek多语言智能创作引擎解析
智能计算研究中心
其他
内容概要在人工智能技术加速演进的背景下,DeepSeek系列产品通过混合专家架构(MoE)与670亿参数的协同设计,构建了多模态智能创作引擎的核心竞争力。该系统依托动态路由机制,将视觉语言理解模块与多语言处理单元进行深度耦合,使模型在解析图文混合信息时展现出超越单一模态的认知能力。尤为突出的是,其分层参数激活策略将推理成本降低至传统密集模型的38%,同时维持了95%以上的任务完成精度。行业分析机构
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- IOS兼容 - uniapp ios固定定位失效与刘海屏的坑
月白星兮
iosuni-appcocoa
问题描述uniapp一套代码,打包之后安卓可以正常显示版本号,IOS不可以错误现象:IOS只有滚动到屏幕底部才能看到版本号原因分析:IOS设计更希望屏幕跟随着用户滚动而滚动,所以无法实现相对浏览器窗口的固定定位。IOS实现的功能是相对最近的允许滚动的元素定位,且不能遮罩滚动元素的兄弟吉父元素的兄弟元素。一般情况:固定定位是相对于浏览器窗口,且可以使页面中的某个元素不随浏览器的滚动而消失IOS固定定
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&