- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- 利用大数据领域Doris提升企业数据决策效率
大数据洞察
大数据网络ai
利用大数据领域Doris提升企业数据决策效率关键词:大数据、Doris、企业数据决策、数据处理、效率提升摘要:本文围绕利用大数据领域的Doris来提升企业数据决策效率展开。首先介绍了背景,包括目的、预期读者、文档结构和相关术语。接着阐述了Doris的核心概念、架构以及与其他系统的联系。详细讲解了Doris的核心算法原理和具体操作步骤,并给出Python代码示例。同时介绍了相关的数学模型和公式。通过
- Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案
mmlihaio
数据库云原生python
Tair向量数据库:阿里云原生内存数据库服务的高性能向量检索解决方案1.引言在当今的人工智能和大数据时代,高效的向量检索已成为许多应用场景的关键需求。Tair作为阿里云开发的云原生内存数据库服务,不仅提供了丰富的数据模型和企业级能力,还引入了基于非易失性内存(NVM)存储介质的持久内存优化实例。本文将深入探讨如何利用Tair向量数据库功能,实现高性能的向量存储和检索。2.Tair向量数据库概述Ta
- 解锁阿里云E-MapReduce:大数据处理的超能力秘籍
云资源服务商
阿里云云计算人工智能云原生
一、引言在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业创新发展的核心驱动力。从电商平台精准的个性化推荐,到金融机构严密的风险评估,再到医疗领域高效的疾病预测,大数据的应用场景无处不在,深刻地改变着我们的生活与工作方式。在这片充满机遇与挑战的大数据领域中,阿里云E-MapReduce宛如一颗璀璨的明星,占据着举足轻重的地位。它凭借强大的大数据处理能力、卓越的性能表现以及丰富的功能特性,为企业和
- 大数据面试必备:Kafka性能优化 Producer与Consumer配置指南
Kafka面试题-在Kafka中,如何通过配置优化Producer和Consumer的性能?回答重点在Kafka中,通过优化Producer和Consumer的配置,可以显著提高性能。以下是一些关键配置项和策略:1、Producer端优化:batch.size:批处理大小。增大batch.size可以使Producer每次发送更多的消息,但要注意不能无限制增大,否则会导致内存占用过多。linger
- 图扑软件智慧云展厅,开启数字化展馆新模式
智慧园区
可视化5g人工智能大数据安全云计算
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。图扑软件运用HT强大的渲染功能,数字孪生“云展位”,1:1复现实际展厅内部独特的结构造型和建筑特色。也可以第一人称视角漫游,模拟用户在展厅内的参观场景,在保
- vue大数据量列表渲染性能优化:虚拟滚动原理
Java小卷
Vue3开源组件实战vue3自定义Tree虚拟滚动
前面咱完成了自定义JuanTree组件各种功能的实现。在数据量很大的情况下,我们讲了两种实现方式来提高渲染性能:前端分页和节点数据懒加载。前端分页小节:Vue3扁平化Tree组件的前端分页实现节点数据懒加载小节:ElementTreePlus版功能演示:数据懒加载关于扁平化结构Tree和嵌套结构Tree组件的渲染嵌套结构的Tree组件是一种递归渲染,性能上比起列表结构的v-for渲染比较一般。对于
- redis的scan使用详解,结合spring使用详解
黑皮爱学习
redis自学笔记redisspring数据库
Redis的SCAN命令是一种非阻塞的迭代器,用于逐步遍历数据库中的键,特别适合处理大数据库。下面详细介绍其使用方法及在Spring框架中的集成方式。SCAN命令基础SCAN命令的基本语法:SCANcursor[MATCHpattern][COUNTcount]cursor:迭代游标,初始为0,每次迭代返回新的游标值。MATCHpattern:可选,用于过滤键的模式(如user:*)。COUNTc
- MongoDB 高性能应用场景与实践
AI自闭实验者
mongodb数据库
```htmlMongoDB高性能应用场景与实践MongoDB高性能应用场景与实践随着大数据时代的到来,数据库作为数据存储和管理的核心工具,其性能和可扩展性显得尤为重要。在众多的数据库解决方案中,MongoDB凭借其灵活的数据模型、高性能和易于扩展的特点,在许多场景下成为开发者的首选。什么是MongoDB?MongoDB是一个开源的、面向文档的NoSQL数据库管理系统。它以JSON样式的文档存储数
- 缓存与加速技术实践-MongoDB数据库应用
曼汐 .
数据库缓存mongodb
一.什么是MongoDBMongoDB是一个文档型数据库,数据以类似JSON的文档形式存储。MongoDB的设计理念是为了应对大数据量、高性能和灵活性需求。MongoDB使用集合(Collections)来组织文档(Documents),每个文档都是由键值对组成的。数据库(Database):存储数据的容器,类似于关系型数据库中的数据库。集合(Collection):数据库中的一个集合,类似于关系
- 自学Java怎么入门
Java鼠鼠吖
java开发语言
自学Java其实没有想象中那么难,只要找对方法,循序渐进地学习,很快就能上手。下面我结合自己的经验,给你整理一条清晰的学习路径,咱们一步步来。一、先了解Java能做什么在开始之前,建议你先看看Java都能用在哪些地方。比如开发企业级系统、Android应用、大数据处理等等。这样你就能明白为什么要学它,也更有动力。Java最大的特点就是"一次编写,到处运行",这要归功于JVM虚拟机。二、准备好学习环
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 智能汽车图像及视频处理方案,支持视频智能包装创作能力
美摄科技
汽车
在这个日新月异的智能时代,每一帧画面都承载着超越想象的力量。随着自动驾驶技术的飞速发展,智能汽车不仅成为了未来出行的代名词,更是技术与艺术完美融合的典范。在这场变革的浪潮中,美摄科技以创新为翼,推出了领先的智能汽车图像及视频处理方案,为智能汽车行业带来了前所未有的视觉盛宴,重新定义了智能出行的视觉体验。一、智能重塑,视觉新境界美摄科技的智能汽车图像及视频处理方案,是基于深度学习、人工智能及大数据处
- 蜂鸟云平台大更新:地图空间定价重塑与功能全面升级
蜂鸟视图fengmap
信息可视化蜂鸟云地图编辑器地图绘制工具室内外地图一体化智慧园区蜂鸟视图
1.引言随着云计算、大数据以及人工智能技术的快速发展,企业对云平台的需求日益增长。蜂鸟云平台作为一款创新性的地图服务平台,已逐渐成为众多企业、政府及科研机构的核心依赖。为了更好地满足用户需求,提高平台的市场竞争力,蜂鸟云平台定期进行功能更新与优化。2024年9月21日,蜂鸟云平台将在晚上20:00至24:00进行一轮重要的系统更新。本次更新的核心内容包括地图空间的重新定价与功能优化,涉及制图、微程
- 【笔记-软考】大数据架构-Lambda与Kappa架构对比
我叫白小猿
软考软考架构大数据KappaLambda
Author:赵志乾Date:2024-07-28Declaration:AllRightReserved!!!1.简介大数据系统架构的设计思想很大程度受技术条件和思维模式的限制;Lambda架构在提出初期面向小范围业务,直接将成熟离线处理技术(Hadoop)和实时处理技术(Storm)相结合,用View模型将二者处理后得到的输出结果结合起来,在服务层进行统一后,再开放给上层服务,是相当可行且高效
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- 微算法科技融合Grover算法与统一哈希函数的混合经典-量子算法技术,可在多领域高效提升文本处理效率
MicroTech2025
量子计算哈希算法
随着数据规模的不断扩大,尤其是在大数据和人工智能驱动的应用中,这些经典算法的线性复杂度逐渐成为瓶颈。面对数十亿级别的文本数据,线性时间的算法仍然难以满足实时性的要求。此外,经典算法在处理无序或随机文本时,性能往往会显著下降,进一步限制了其在特定场景中的适用性。量子计算是一种基于量子力学原理的新型计算范式。它与经典计算的根本区别在于量子叠加和量子纠缠的特性,使得量子计算能够并行处理大量状态,从而在某
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- WIND金融客户端Python接口文档:Python环境下的金融大数据利器
邴韵芯
WIND金融客户端Python接口文档:Python环境下的金融大数据利器【下载地址】WIND金融客户端Python接口文档WINDPY是WIND金融客户端为Python开发者提供的强大接口,支持在Python环境中便捷访问WIND金融数据库。它提供了丰富的函数和命令,涵盖历史数据、实时行情、交易操作等多种功能,适用于量化交易、数据分析等场景。无论是获取股票、基金、债券等金融产品的历史序列、分钟数
- Flink部署与应用——Flink集群模式
黄雪超
从0开始学Flinkflink大数据
Flink集群模式在大数据处理领域,ApacheFlink凭借其卓越的流批一体化处理能力,成为众多企业的首选框架。而Flink集群模式的选择与运用,对于充分发挥Flink的性能优势、满足不同业务场景的需求至关重要。接下来,我们将深入探讨Flink的多种集群模式,剖析其特点、适用场景及相互间的差异。集群部署模式对比Flink的集群部署模式可依据两个关键维度进行分类:一是集群的生命周期和资源隔离方式;
- 【TIDB】了解,MySQL和TiDB的取舍,差异
{⌐■_■}
tidbmysql数据库
一句话总结:MySQL好用,但扩展性差;TiDB像MySQL,但能轻松应对大数据、高并发。为什么用TiDB而不是MySQL?场景MySQLTiDB数据量很大(几百GB~TB)容易卡顿、查询慢水平扩展,性能稳定业务快速增长、分库分表难维护需要人工做分库分表自动水平扩展,无需分库分表高并发写入(比如秒杀、交易)主从延迟、写入瓶颈多副本写入,强一致性,吞吐更高高可用要求需要额外搭建主从/集群内建高可用(
- Python爬虫(56)Python数据清洗与分析实战:Pandas+Dask双剑合璧处理TB级结构化数据
一个天蝎座 白勺 程序猿
Python爬虫入门到高阶实战python爬虫pandas
目录引言:大数据时代的清洗革命一、数据清洗基础:Pandas核心方法论1.1数据去重策略深度解析1.1.1精确去重与模糊去重1.1.2智能去重策略1.2缺失值处理金字塔模型1.2.1基础处理方法1.2.2智能缺失处理二、Dask架构解析:突破单机内存限制2.1Dask核心组件图谱2.2DaskDataFrame核心API映射表三、TB级数据清洗实战:电商订单数据分析3.1场景描述3.2分布式清洗流
- [创业之路-441]:行业 - 互联网+移动互联网和大数据时代的100个预言:技术个性、商业变革、社会重构、文化娱乐、环境、教育、健康医疗、未来生活方式
文火冰糖的硅基工坊
创业之路大数据重构人工智能架构科技系统架构健康医疗
目录一、技术革新二、商业变革三、社会重构四、文化与娱乐六、环境与可持续发展七、教育与知识传播八、健康与医疗九、伦理与法律十、未来生活方式十一、终极预言结语在移动互联网和大数据时代,技术革新正以前所未有的速度重塑社会、经济与文化。以下是基于当前趋势和未来可能性的100个预言,涵盖技术、商业、社会、文化等多个维度:一、技术革新通信-5G与6G的普及:未来5年内,5G将覆盖全球90%的人口,6G技术开始
- 面试宝典:深入理解这110道python面试题,AI和大数据向你招手
喜欢打酱油的老鸟
Python
https://www.toutiao.com/a6672867099800502795/1、一行代码实现1--100之和利用sum()函数求和2、如何在一个函数内部修改全局变量函数内部global声明修改全局变量3、列出5个python标准库os:提供了不少与操作系统相关联的函数sys:通常用于命令行参数re:正则匹配math:数学运算datetime:处理日期时间4、字典如何删除键和合并两个字
- MapReduce原理详解:大数据处理的基石与实战应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶mapreduce大数据ai
MapReduce原理详解:大数据处理的基石与实战应用关键词:MapReduce、大数据处理、原理、算法、实战应用摘要:本文深入探讨了MapReduce这一在大数据处理领域具有基石地位的技术。首先介绍了MapReduce的背景,包括其目的、适用读者、文档结构和相关术语。接着详细阐述了核心概念、算法原理、数学模型,通过Python代码进行了算法的详细说明。然后给出了项目实战案例,从开发环境搭建到代码
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- MySQL派生表查询大数据量无结果问题分析与解决
GreatSQL社区
mysql数据库
MySQL派生表查询大数据量无结果问题分析与解决一、问题发现在客户现场的一次问题报告中发现某个带有派生表进行查询的时候,数据量少的时候有结果,但是数据量大的时候返回无记录。看下面例子:1、准备表CREATETABLE`cmdb_item`(`cm_item_id`varchar(350)NOTNULL,`cm_model_id`varchar(350)NOTNULL,PRIMARYKEY(`cm_
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不