- rknn优化教程(三)
凌佚
rknnCPPxmakeYOLO目标检测c++
文章目录1.前述2.部分代码3.说明1.前述OK,这一篇博客将完整给出最后的优化教程,包括代码设计。首先有这样的目录结构:./rknn_engine├──include│├──def││└──rknn_define.h│└──rknn_engine.h├──src│├──common││├──rknn_data.h││└──rknn_functions.hpp│├──inference││├──i
- 【RKNN】RKNN-Toolkit2 Python API之accuracy_analysis函数详解
浩瀚之水_csdn
#RK平台边缘端部署(实践)python数据挖掘开发语言
accuracy_analysis()是RKNN-Toolkit2中用于量化精度分析的核心接口,通过对比浮点模型与量化模型(或NPU硬件推理)的输出差异,定位量化误差来源。以下结合多篇文档整理其核心参数、使用流程及优化策略:一、核心参数说明参数名类型默认值说明inputslist[str/ndarray]必填输入数据路径或Numpy数组列表(需与模型输入尺寸一致)。ref_outputslist[
- Ubuntu24.04 onnx 模型转 rknn
一只名叫Me的猫
大模型人工智能个人开发
前面的环境配置有点懒得写,教程也很多,可以自己找rknn-toolkit2gitee地址:pingli/rknn-toolkit2试了很多开源的代码,都没办法跑通,最后自己改了一版微调后的qwen2模型适用fromrknn.apiimportRKNNimportosif__name__=='__main__':platform='rk3588'rknn=RKNN()rknn.config(targ
- RKNN3588配置推理环境
不要绝望总会慢慢变强
人工智能深度学习python
查看NPU使用率sudowatch-n0.1/sys/kernel/debug/rknpu/loa
- RKNN-Toolkit 开源项目教程
彭宏彬
RKNN-Toolkit开源项目教程rknn-toolkit项目地址:https://gitcode.com/gh_mirrors/rk/rknn-toolkit1.项目介绍RKNN-Toolkit是一款由Rockchip开发的软件工具包,旨在为开发者提供模型转换、推理以及性能评估等功能,支持在PC和RockchipNPU平台(包括RK1808/RK1806/RK3399Pro/RV1109/RV
- rknn优化教程(二)
凌佚
xmakerknnCPPc++opencv目标检测
文章目录1.前述2.三方库的封装2.1`xrepo`中的库2.2`xrepo`之外的库2.2.1`opencv`2.2.2`rknnrt`2.2.3`spdlog`3.`rknn_engine`库1.前述OK,开始写第二篇的内容了。这篇博客主要能写一下:如何给一些三方库按照xmake方式进行封装,供调用如何按照xmake构建rknn_engine2.三方库的封装这个三方库的封装,主要分为如下两类:
- 保姆级教程:RK3588部署yolo目标检测模型
ling913
YOLOrk3588鲁班猫yolo部署瑞星微目标检测
本文用到的板卡设备为鲁班猫4(LubanCat-4),瑞芯微rk3588系列处理器。官方文档写的挺详细了,但是版本太多不统一,而且涉及了多个代码仓库,稍显杂乱。本着最少代码原则,仅需下载一个代码仓库,将整个实践过程记录一下。整体分为两大块:PartA:在PC上,训练yolo目标检测模型(.pt格式);再转为.onnx格式;最后转为.rknn格式。PartB:在板卡上,运行rknn格式的模型。Par
- RK3588 RKNN ResNet50推理测试
Hi20240217
环境搭建学习AI推理RK3588RKNNNPU
RK3588RKNNResNet50推理测试一、背景二、性能数据三、操作步骤3.1安装依赖3.2安装rknn-toolkit,更新librknnrt.so3.3下载推理图片3.4生成`onnx`模型转换脚本3.5生成rknn模型3.6运行rknn模型一、背景在嵌入式设备上进行AI推理时,我们面临着算力有限、功耗敏感等挑战。RK3588芯片搭载的NPU(神经网络处理单元)专为加速AI运算设计,而RK
- 野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(四)安装RKNN Toolkit Lite2
熊猫在哪
pythonpython目标检测机器学习人工智能神经网络深度学习嵌入式硬件
RKNNToolkitLite2是瑞芯微专为RK系列芯片开发的NPU加速推理API。若不使用该工具,计算任务将仅依赖CPU处理,无法充分发挥芯片高达6TOPS的NPU算力优势。按照官方文档先拉一下官方代码库,然后通过whl文件安装,因为我是python3.10环境,选择cp310的安装包gitclonehttps://gitee.com/LubanCat/lubancat_ai_manual_co
- RK3568的rknn环境配置
Livan.Tang
Yolo系列目标检测深度学习神经网络人工智能opencv计算机视觉
本文实现yolov8的rk3568板端部署的基本npu环境配置,以比较简洁的方式,亲测可行。本专栏部署为官方yolov8n模型,自己训练的1类物体的识别的部署(与官方的80类不一样)1.先安装rknn-toolkit2pipinstallrknn-toolkit22.第一步安装完成以后,可以实现python文件的推理,想要使用C++还需要配置相关的SDK环境。gitclonehttps://git
- RK3568-npu
Paper_Love
RK3568linux
参考模型链接https://github.com/airockchip/rknn_model_zoo/tree/main?tab=readme-ov-file模型精度INT8FP16推理速度可以通过视频帧率推算推理速度
- rk3568-mobilenet-main.cc解析
超级韩逗逗
linux人工智能
rk3568-mobilenet-main.cc解析前言解析总结前言正点原子rk3568学习,rk官方RKNN_MODEL_ZOO文件中rknn_model_zoo-main/examples/mobilenet/cpp/main.cc从执行命令:./build-linux.sh-trk3568-aaarch64-dmobilenet到:cmake../../examples/mobilenet/
- RK3576 LINUX RKNN SDK 测试
Lary_Rock
RK平台linux编程AI大模型linux运维服务器
安装Conda工具安装MiniforgeCondawget-chttps://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.shchmod777Miniforge3-Linux-x86_64.shbashMiniforge3-Linux-x86_64.shsource~/minif
- 【边缘设备】yolov5训练与rknn模型导出并在RK3588部署~1.环境准备(亲测有效)
老周有AI~算法定制
边缘设备YOLO
保姆级教程,看这一篇就够用了。在翻阅了网络上很多资料后,发现很多版本的信息不匹配。花了一周的时间配置环境,以及环境验证,然后写了这篇长文。有过程,有代码,有经验,欢迎大家批评指正。一、环境准备【边缘设备】yolov5训练与rknn模型导出并在RK3588部署~1.环境准备(亲测有效)二、环境验证【边缘设备】yolov5训练与rknn模型导出并在RK3588部署~2.环境验证(亲测有效)三、yolo
- yolov8模型在rk3588的环境部署(详细版)
1028_左傲杰
pythonpipubuntulinux
rknn手册最主要参考文档官方文档:9.YOLOv8—[野火]嵌入式AI应用开发实战指南—基于LubanCat-RK系列板卡文档文件介绍rknn-toolkit2:一般用于在pc端布置环境进行模型转换rknn_toolkit_lite2:一般为版端推理环境rknpu2:一般用于驱动更新rknn_model_zoo:一般用于ultralytics_yolov8导出的模型转rknnultralytic
- ArmSoM Sige5 & CM5:RK3576 上 Ultralytics YOLOv11 边缘计算新标杆
ArmSoM开源硬件
YOLO边缘计算人工智能rk3588rk3576嵌入式硬件rockchip
在计算机视觉技术加速落地的今天,ArmSoM正式宣布其基于RockchipRK3576的旗舰产品Sige5开发板和CM5核心板全面支持UltralyticsYOLOv11模型的RKNN部署。这一突破标志着边缘计算领域迎来新一代高性能、低功耗的AI解决方案,为工业检测、智能安防、机器人导航等场景提供“开箱即用”的硬核支持。二、RKNN工具包RKNN工具包是由Rockchip提供的一套工具和库,用于促
- RK3588上Linux系统编译C/C++ Demo时出现BUG:The C/CXX compiler identification is unknown
筱戥芊茹
linuxc语言c++嵌入式硬件bug
BUG的解决思路BUG描述:解决方法:首先最重要的一步:第二步:正确设置gcc和g++的路径方法一:使用本地系统中安装的aarch64-linux-gnu-gcc和aarch64-linux-gnu-g++方法二:下载使用官方指定的交叉编译工具方法三:使用本地系统中安装的gcc和g++注意:方法一、二、三运行前都需要找到`/home/firefly/second/rknn_model_zoo-2.
- RK3588 NPU开发环境搭建
stxinu
人工智能linuxubunturk3588RKNNNPU
如何在Ubuntu系统(PC)上搭建RK3588BuildrootLinux的NPU开发环境?即电脑端运行Ubuntu系统,而RK3588板卡运行BuildrootLinux系统的情况下,搭建RK3588NPU开发环境。下面是相应的步骤(对应的命令):0.依赖文件RKNPU2工程下载地址:rknn-toolkit2/rknpu2atmaster·airockchip/rknn-toolkit2·G
- RK3568笔记五十六:yolov8_obb旋转框训练部署
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。本文基于rknn_model_zoo和山水无移大佬的博客和代码训练模型并部署到正点原子的ATK-DLRK3568板子测试。https://github.com/ultralytics/ultralytics一、训练1、环境搭建使用的是AUTODL环境,yolov8-obb数据集不大,也可以使用cpu。2、创建虚拟环境#创建虚拟环境condacreate-nyo
- rknn环境搭建之docker篇
wyw0000
rknn人脸识别机器学习docker容器运维ai
目录1.rknn简介2.环境搭建2.1下载RKNN-Toolkit2仓库2.2下载RKNNModelZoo仓库2.3下载交叉编译器2.4下载Docker镜像2.5下载ndk2.5加载docker镜像2.6dockerrun命令创建并运行RKNNToolkit2容器2.7安装cmake3.模型转换3.1下载模型3.2模型转换4.编译c++demo5.推送到板端运行1.rknn简介RKNN是由瑞芯微电
- 【亲测可行】最新ubuntu搭建rknn-toolkit2
computer_vision_chen
带你跑通人工智能项目YOLOrknn嵌入式AI
文章目录结构图(ONNX->RKNN)下载rknn-toolkit2搭建环境配置镜像源conda搭建python3.8版本的虚拟环境进入packages目录安装依赖库测试安装是否成功其它rknn-toolkit2rknn_model_zoo关于部署的博客发布本文的时间为2024.10.13rknn-toolkit2版本为2.2.0结构图(ONNX->RKNN)下载rknn-toolkit2gitc
- yolov5转onnx模型,onnx转rknn模型部署在rk3588平台上
wtqpshhh
YOLOpython
安装python等环境,以及相关依赖库,然后克隆YOLOv5仓库的源码。#安装anaconda参考前面环境搭建教程,然后使用conda命令创建环境condacreate-nyolov5python=3.9condaactivateyolov5#拉取最新的yolov5(教程测试时是v7.0),可以指定下版本分支#gitclonehttps://github.com/ultralytics/yolov
- .onnx模型转.rknn模型方法详解
墨小傲
前端linuxjavascript
首先安装对应的onnx和rknn相关环境将所需环境安装好以后就可以新建一个:onnx2rknn.py的文件,用于模型转换。代码:fromrknn.apiimportRKNNimportosif__name__=='__main__':platform='rk3588''''step1:createRKNNobject'''rknn=RKNN()'''step2:loadthe.onnxmodel'
- 踩坑,RK3588编译运行rknn的c++例程
血玥珏
rknnc语言c++开发语言
官网:https://github.com/airockchip/rknn-toolkit2下载rknn-toolkit2-master.zip解压缩后cd进入rknn-toolkit2-master/rknpu2/examples/rknn_yolov5_demo将脚本设置可执行chmod777build-linux.sh按照README_CN.md里的说明运行./build-linux.sh-
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- 使用rknn进行yolo11-pose部署
点PY
深度学习模型部署pytorch深度学习人工智能
文章目录概要生成ONNX生成RKNN实测效果概要使用RKNN进行YOLOv11Pose部署的必要性在于,RKNN能将YOLOv11Pose模型转化为适合Rockchip硬件平台(如RV1109、RV1126)执行的格式,充分利用其AI加速功能,显著提高推理速度和效率。此外,RKNN提供模型优化(如量化)功能,有助于减少计算资源消耗,提升实时处理能力,特别适合在嵌入式设备上进行高效、低功耗的姿态估计
- python环境的yolov11.rknn物体检测
子正
问题建模#AI自由行部署YOLO机器学习运维
1.首先是我手里生成的一个yolo11的.rknn模型:2.比对一下yolov5的模型:2.1yolov5模型的后期处理:outputs=rknn.inference(inputs=[img2],data_format=['nhwc'])np.save('./onnx_yolov5_0.npy',outputs[0])np.save('./onnx_yolov5_1.npy',outputs[1]
- 【rknn】onnx转rknn脚本解读以及函数解读(版本V1.7.3)
阿颖&阿伟
【11-1】rknn开发板rknn模型转换
目录1.RKNN()示例:2.rknn.config()batch_size:mean_values:std_values:channel_mean_value:epochs:reorder_channel:force_builtin_permneed_horizontal_merge:quantized_dtype:quantized_algorithmmmse_epoch:optimizati
- rk3588部署yolov8视频目标检测教程
今夕是何年,
视觉算法部署YOLO目标检测人工智能
目录1.环境配置1.1训练和导出onnx环境(电脑端执行)1.2导出rknn环境(电脑端执行)2.训练部分(电脑端执行)2.1训练脚本(电脑端执行)3.onnx转rknn(电脑端执行)1.环境配置1.1训练和导出onnx环境(电脑端执行)#使用conda创建一个python环境condacreate-ntorchpython=3.9#激活环境condaactivatetorch#安装yolov8p
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要