数据库分库分表笔记

参考文章链接

cnblogs.com/butterfly100/p/9034281.html

一、数据切分

关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

数据库分布式核心内容无非就是数据切分(Sharding),以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。

1.垂直(纵向)切分

垂直分库和垂直分表两种。

垂直分库就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。


垂直分表是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了磁盘IO,从而提升了数据库性能。


垂直切分的优点:

解决业务系统层面的耦合,业务清晰

与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等

高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈

缺点:

部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度

分布式事务处理复杂

依然存在单表数据量过大的问题(需要水平切分)

2、水平(横向)切分

当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。

水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:


库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。

水平切分的优点:

不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力

应用端改造较小,不需要拆分业务模块

缺点:

跨分片的事务一致性难以保证

跨库的join关联查询性能较差

数据多次扩展难度和维护量极大

水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。几种典型的数据分片规则为:

1、根据数值范围

这样的优点在于:

单表大小可控

天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移

使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题。

缺点:

热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询。

2、根据数值取模

一般采用hash取模mod的切分方式,例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个库,余数为1的放到第二个库,以此类推。这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段,则可明确定位到相应库去查询。

优点:

数据分片相对比较均匀,不容易出现热点和并发访问的瓶颈

缺点:

后期分片集群扩容时,需要迁移旧的数据(使用一致性hash算法能较好的避免这个问题)

容易面临跨分片查询的复杂问题。比如上例中,如果频繁用到的查询条件中不带cusno时,将会导致无法定位数据库,从而需要同时向4个库发起查询,再在内存中合并数据,取最小集返回给应用,分库反而成为拖累。


二. 分库分表带来的问题

1、事务一致性问题

分布式事务

当更新内容同时分布在不同库中,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用"XA协议"和"两阶段提交"处理。

分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间。导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

最终一致性

对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误后立即回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等等。事务补偿还要结合业务系统来考虑。

2、跨节点关联查询 join 问题

切分之前,系统中很多列表和详情页所需的数据可以通过sql join来完成。而切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用join查询。

解决这个问题的一些方法:

1)全局表全局表,也可看做是"数据字典表",就是系统中所有模块都可能依赖的一些表,为了避免跨库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少会进行修改,所以也不担心一致性的问题。

2)字段冗余一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如:订单表保存userId时候,也将userName冗余保存一份,这样查询订单详情时就不需要再去查询"买家user表"了。

但这种方法适用场景也有限,比较适用于依赖字段比较少的情况。而冗余字段的数据一致性也较难保证,就像上面订单表的例子,买家修改了userName后,是否需要在历史订单中同步更新呢?这也要结合实际业务场景进行考虑。

3)数据组装在系统层面,分两次查询,第一次查询的结果集中找出关联数据id,然后根据id发起第二次请求得到关联数据。最后将获得到的数据进行字段拼装。

4)ER分片关系型数据库中,如果可以先确定表之间的关联关系,并将那些存在关联关系的表记录存放在同一个分片上,那么就能较好的避免跨分片join问题。在1:1或1:n的情况下,通常按照主表的ID主键切分。如下图所示:


这样一来,Data Node1上面的order订单表与orderdetail订单详情表就可以通过orderId进行局部的关联查询了,Data Node2上也一样。

3、跨节点分页、排序、函数问题

需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总和再次计算,最终将结果返回。

4、全局主键避重问题

有一些常见的主键生成策略:

1)UUIDUUID标准形式包含32个16进制数字,分为5段,形式为8-4-4-4-12的36个字符,例如:550e8400-e29b-41d4-a716-446655440000

UUID是主键是最简单的方案,本地生成,性能高,没有网络耗时。但缺点也很明显,由于UUID非常长,会占用大量的存储空间;另外,作为主键建立索引和基于索引进行查询时都会存在性能问题,在InnoDB下,UUID的无序性会引起数据位置频繁变动,导致分页。

2)结合数据库维护主键ID表在数据库中建立 sequence 表:

CREATE TABLE `sequence` (

  `id` bigint(20) unsigned NOT NULL auto_increment,

  `stub` char(1) NOT NULL default '',

  PRIMARY KEY  (`id`),

  UNIQUE KEY `stub` (`stub`)

) ENGINE=MyISAM;

mysql中四种存储引擎的区别和选择:

1、InnoDB存储引擎

2、MyISAM存储引擎

3、MEMORY存储引擎

4、Archive

如果要提供提交、回滚、崩溃恢复能力的事物安全(ACID兼容)能力,并要求实现并发控制,InnoDB是一个好的选择

如果数据表主要用来插入和查询记录,则MyISAM引擎能提供较高的处理效率

如果只是临时存放数据,数据量不大,并且不需要较高的数据安全性,可以选择将数据保存在内存中的Memory引擎,MySQL中使用该引擎作为临时表,存放查询的中间结果

如果只有INSERT和SELECT操作,可以选择Archive,Archive支持高并发的插入操作,但是本身不是事务安全的。Archive非常适合存储归档数据,如记录日志信息可以使用Archive

使用哪一种引擎需要灵活选择,一个数据库中多个表可以使用不同引擎以满足各种性能和实际需求,使用合适的存储引擎,将会提高整个数据库的性能。

3)Snowflake分布式自增ID算法

Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字,组成部分:

第一位未使用

接下来41位是毫秒级时间,41位的长度可以表示69年的时间

5位datacenterId,5位workerId。10位的长度最多支持部署1024个节点

最后12位是毫秒内的计数,12位的计数顺序号支持每个节点每毫秒产生4096个ID序列

这样的好处是:毫秒数在高位,生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位。

不足就在于:强依赖机器时钟,如果时钟回拨,则可能导致生成ID重复。

综上

结合数据库和snowflake的唯一ID方案,可以参考业界较为成熟的解法:Leaf——美团点评分布式ID生成系统,并考虑到了高可用、容灾、分布式下时钟等问题。

5、数据迁移、扩容问题

当业务高速发展,面临性能和存储的瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据迁移的问题。一般做法是先读出历史数据,然后按指定的分片规则再将数据写入到各个分片节点中。此外还需要根据当前的数据量和QPS,以及业务发展的速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片上的单表数据量不超过1000W)

如果采用数值范围分片,只需要添加节点就可以进行扩容了,不需要对分片数据迁移。如果采用的是数值取模分片,则考虑后期的扩容问题就相对比较麻烦。

三. 什么时候考虑切分

1、能不切分尽量不要切分

2、数据量过大,正常运维影响业务访问

这里说的运维,指:

1)对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的

2)对一个很大的表进行DDL修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt-online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减少,有助于降低这个风险。

3)大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力

3、随着业务发展,需要对某些字段垂直拆分

4、数据量快速增长

5、安全性和可用性

你可能感兴趣的:(数据库分库分表笔记)