利用SQL进行BlackFriday销售数据分析(附PPT)

数据来源:https://www.kaggle.com/mehdidag/black-friday/version/1

数据来源自kaggle平台的BlackFriday.csv文件,包含54万条记录,12个字段。

字段说明:User_ID:用户编码,用户唯一标识

                    Product_ID:产品编码,商品唯一标识

                    Gender:性别(F表示女性,M表示男性)

                    Age:年龄(分0~17、18~25、26~35、36~45、46~50、51~55、55+共7个年龄段)

                    Occupation:职业(由0~20数字组成,分成20个类别)

                    City_Category:城市类别(分A、B、C共3个类别)

                    Stay_In_Current_City_Years:在当前城市停留的年份(分0、1、2、3、4+共5个类别)

                    Marital_Status:婚姻状况(0表示未婚,1表示已婚)

                    Product_Category_1:商品所属分类1(以数字为代号,不可为空)

                    Product_Category_2:商品所属分类2(以数字为代号,可为空)

                    Product_Category_3:商品所属分类3(以数字为代号,可为空)

                    Purchase:消费金额(单位:美元)

分析思路:“黑五”期间最销量最高的商品是什么?

                    销量最高的商品种类是什么?

                    不同城市销量的差异?

                    不同性别、年龄、职业群体的消费状况

                    利用PPT进行可视化展示


分析过程:

① 将数据导入Navicat中(此步骤略)

②销量最高的商品TOP 10

(代码)

SELECT product_id, count( * ) AS sales_volume, sum( purchase ) AS sale

FROM blackfriday

GROUP BY product_id

ORDER BY count( * ) DESC;

LIMIT 10;

(PPT)

② 销量最高的商品种类TOP10

(代码)

SELECT concat('T',product_category_1), count( * ) AS sales_volume, sum( purchase ) AS sale

FROM blackfriday

GROUP BY product_category_1

ORDER BY count( * ) DESC;

LIMIT 10;

(PPT)

③ 不同城市的销售情况

(代码)

SELECT city_category, count( CASE WHEN gender = 'F' THEN 1 END ) AS f_buy, 

count( CASE WHEN gender = 'M' THEN 1 END ) AS m_buy, count( * ) AS buy

FROM blackfriday

GROUP BY city_category

ORDER BY count( * ) DESC;

(PPT)

④ 男女分别的购买量

(代码)

SELECT gender, count( * ) AS sales_volume

FROM blackfriday 

GROUP BY

gender;

(PPT)


⑤ 男性中的热销商品

(代码)

SELECT CONCAT('T',product_category_1), count( * ) AS sales_volume

FROM blackfriday

WHERE gender = 'M'

GROUP BY product_category_1

ORDER BY count( * ) DESC;

LIMIT 4;

(PPT)

⑥ 女性中的热销商品

(代码)

SELECT CONCAT('T',product_category_1), count( * ) AS sales_volume

FROM blackfriday

WHERE gender = 'F'

GROUP BY product_category_1

ORDER BY count( * ) DESC;

(PPT)

⑦ 不同职业的消费情况

(代码)

SELECT concat('J',occupation), sum( purchase ) AS buy

FROM blackfriday

GROUP BY occupation

ORDER BY sum( purchase ) DESC

LIMIT 10;

(PPT)

⑧ 不同年龄段的购买力

(代码)

SELECT age,

sum( CASE WHEN gender = 'M' THEN purchase END ) AS buy_m,

sum( CASE WHEN gender = 'F' THEN purchase END ) AS buy_f

FROM blackfriday

GROUP BY age

ORDER BY age;

(PPT)

⑨ 结论

(PPT)


你可能感兴趣的:(利用SQL进行BlackFriday销售数据分析(附PPT))