虽然我们用的卷积核较小,每次只会丢失几像素,但是如果应用多层连续的卷积层,累积的像素丢失就会很多。解决此问题的方法为填充。
填充后的输出形状将为 ( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1) (nh−kh+ph+1)×(nw−kw+pw+1)
import torch
from torch import nn
def comp_conv2d(conv2d, X):
X = X.reshape((1, 1) + X.shape) # 批量大小和通道数都是1(此处为元组拼接)
Y = conv2d(X)
return Y.reshape(Y.shape[2:]) # 再忽略前两个维度
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape # 如果无填充则是 (6,6)
torch.Size([8, 8])
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1)) # 也可以填充不同的高度和宽度
comp_conv2d(conv2d, X).shape # 若不填充则为 (4, 6)
torch.Size([8, 8])
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2) # 步幅为2则宽度高度减半
comp_conv2d(conv2d, X).shape
torch.Size([4, 4])
引入步幅后输出的形状应为 ⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ \left\lfloor(n_h-k_h+p_h+s_h)/s_h\right\rfloor\times\left\lfloor(n_w-k_w+p_w+s_w)/s_w\right\rfloor ⌊(nh−kh+ph+sh)/sh⌋×⌊(nw−kw+pw+sw)/sw⌋
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4)) # 实际实践中很少使用不一致的步幅或填充
comp_conv2d(conv2d, X).shape
torch.Size([2, 2])
(1)对于本节中的最后一个示例,计算其输出形状,以查看它是否于实验结果一致。
( 高度 × 宽度 ) = ⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ = ⌊ ( 8 − 3 + 0 + 3 ) / 3 ⌋ × ⌊ ( 8 − 5 + 1 + 4 ) / 4 ⌋ = ⌊ 8 / 3 ⌋ × ⌊ 8 / 4 ⌋ = ( 2 × 2 ) \begin{align} \left(高度\times宽度\right)&=\left\lfloor(n_h-k_h+p_h+s_h)/s_h\right\rfloor\times\left\lfloor(n_w-k_w+p_w+s_w)/s_w\right\rfloor\\ &= \left\lfloor(8-3+0+3)/3\right\rfloor\times\left\lfloor(8-5+1+4)/4\right\rfloor\\ &= \left\lfloor8/3\right\rfloor\times\left\lfloor8/4\right\rfloor\\ &= (2\times2) \end{align} (高度×宽度)=⌊(nh−kh+ph+sh)/sh⌋×⌊(nw−kw+pw+sw)/sw⌋=⌊(8−3+0+3)/3⌋×⌊(8−5+1+4)/4⌋=⌊8/3⌋×⌊8/4⌋=(2×2)
(2)对本节中的实验中,试一试其他填充和步幅的组合。
略
(3)对于音频信号,步幅为2说明什么?
类似于计组里学的对信号进行采样。
(4)步幅大于1的计算优势是什么?
减少计算量。