- C++基础问题
C++基础问题掌握形参默认带缺省值的函数函数调用时#includeintsum(inta,intb=20){returna+b;}intmain(){inta=10,b=20;intret=sum(a,b);coutusingnamespacestd;#defineIS_INLINE1#ifIS_INLINEinline#endifintsum(inta,intb=20){returna+b;}i
- C++ 面向对象
_Chipen
c++开发语言
C++面向对象编程一个类可以定义无数个对象,每一个对象都有自己的成员变量,但是他们共享一套成员方法。构造函数的初始化列表和直接在构造函数中构造的区别:初始化列表是用来初始化成员类的,用来调用成员的构造函数的一个是先调用默认构造后初始化,一个是调用构造函数初始化即:inta=10和inta;a=10的区别。对于普通类型区别不大。初始化列表的默认初始化顺序:成员函数的定义顺序。静态成员变量:类内声明,
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- 子图同构算法-VF2(java实现)
xitianxiaofeixue
java数据结构
子图同构算法-VF2(java实现) 最近在项目中用到了子图同构算法VF2,自己查找的时候发现csdn上没有太详细的博客,所以在这里记录一下。内容主要来自一篇论文(A(Sub)GraphIsomorphismAlgorithmforMatchingLargeGraphs)一、什么是VF2算法 VF2算法是一种子图同构算法,而子图同构我们可以这样定义: 假设有两个图H=(VH,EH)H=(VH,EH
- Java 递归方法详解:从基础语法到实战应用,彻底掌握递归编程思想
大葱白菜
java合集java开发语言个人开发后端学习
作为一名Java开发工程师,你一定在开发中遇到过需要重复调用自身逻辑的问题,比如:树形结构处理、文件夹遍历、斐波那契数列、算法实现(如DFS、回溯、分治)等。这时候,递归方法(RecursiveMethod)就成为你不可或缺的工具。本文将带你全面掌握:什么是递归方法?递归的三要素(边界条件、递归公式、递归方向)递归与循环的对比常见递归问题与实现(阶乘、斐波那契、汉诺塔、树遍历等)递归在真实项目中的
- 树1 树的同构 C++实现
树1树的同构C++实现#题目给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。图1图2现给定两棵树,请你判断它们是否是同构的。输入格式:输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N(≤10),即该树的结点
- 【图像分割】基于模糊聚类FCM和改进的模糊聚类算法实现CT图像分割matlab代码
天天Matlab科研工作室
图像处理Matlab各类代码算法聚类matlab
1简介医学影像分割的基本目标是将图像分割成不同的解剖组织,从而可以从背景中提取出感兴趣区域。因为图像的低分辨率和弱对比度,实现医学影像分割是一件具有挑战的任务。而且,这个任务由于噪声和伪阴影变得更加困难,这些干扰项可能是因器材限制、重建算法和患者移动等原因造成的。目前还没有通用的医学图像分割算法,算法的优点和缺点经常根据所研究的问题而变化。将分割概念具体到颅内出血CT图像上,就是将颅腔中的出血病灶
- FPGA通信设计十问
1.FFT有什么用?FFT(快速傅里叶变换)是离散傅里叶变换(DFT)的高效实现算法,它的核心作用是快速将信号从时域转换到频域,从而简化信号分析和处理的过程。自然界的信号(如声音、图像、电磁波等)通常以时域形式存在(即随时间变化的波形),但很多特性(如频率成分、谐波分布)在频域中更易分析FFT能快速计算信号中各频率分量的幅值和相位。可以进行频率拆分与实时处理。FFT是“信号的透视镜”,让我们能“看
- C++ 数组详解:从基础到实战
光の
javajvm前端
一、数组的定义与核心特性(一)什么是数组?数组(Array)是C++中用于存储一组相同类型元素的连续内存空间。它通过一个统一的名称(数组名)和索引(下标)来访问每个元素,是实现批量数据管理的基础工具。(二)核心特性特性说明同类型所有元素必须是同一数据类型(如int、double)连续性元素在内存中连续存放,地址递增(&arr[i+1]=&arr[i]+sizeof(类型))固定大小数组声明时需指定
- Java与机器学习的邂逅:Weka框架入门指南
墨夶
Java学习资料1java机器学习数据挖掘
在这个数据驱动的时代,机器学习已经成为各行业创新和优化的关键技术。而Java,作为一门成熟且广泛应用的编程语言,在企业级应用开发中占据着重要地位。将二者结合起来,利用Java实现机器学习算法,不仅可以充分发挥其强大的生态系统优势,还能为开发者提供一个高效、稳定的开发环境。今天,我们将带您走进Java与机器学习的世界,探索如何使用Weka这一著名的机器学习库来开启您的智能之旅。Weka简介及其优势什
- (C++)list,vector,set,map四种容器的应用——教务管理系统(测试版)(list基础教程)(vector基础教程)(set基础教程)(map基础教程)(STL库教程)
双叶836
STLC++C++基础教学C++项目c++list开发语言数据结构c语言
目录源代码:代码详解:第1步:搭建基础框架和数据结构目标:定义数据结构和全局容器练习任务:第2步:实现学生管理功能(使用map)目标:添加学生和显示学生列表练习任务:第3步:实现课程管理功能(使用vector)目标:添加课程和显示课程列表练习任务:第4步:实现选课功能(使用list)目标:学生选课和退课功能练习任务:主函数:多说一点(重点代码解释):一.list>enrollments;代码详解1
- FPGA相关通信问题详解
霖12
fpga开发笔记信号处理信息与通信学习开发语言
首先感谢大佬@征途黯然.-CSDN博客的就我的上篇文章《FPGA通信设计十问》提出的问题,我在此做出回复一.解释FFT(快速傅里叶变换)如何在FPGA的IP核中高效实现FFT作为将时域信号转换为频域的核心算法,其在FPGA中的高效实现依赖于硬件架构与算法特性的深度适配。1.流水线架构:提升吞吐量FFT的核心是“蝶形运算”,其计算过程可分解为log2(N)级(N为FFT点数),每级包含N/2次蝶形运
- 华为OD机考 2025C卷 - 围棋的气 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD机考2025C卷华为OD2025C卷
围棋的气华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述围棋棋盘由纵横各19条线垂直相交组成,棋盘上一共19x19=361个交点,对弈双方一方执白棋,一方执黑棋,落子时只能将棋子置于交点上。“气”是围棋中很重要的一个概念,某个棋子有几口气,是指其上下左右方向四个相邻的交叉点中,有几个交叉点没有棋子,由此可知:在棋
- 华为OD机考 2025C卷 - 对称美学 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD2025C卷华为OD机考2025C卷
对称美学华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述对称就是最大的美学,现有一道关于对称字符串的美学。已知:第1个字符串:R第2个字符串:BR第3个字符串:RBBR第4个字符串:BRRBRBBR第5个字符串:RBBRBRRBBRRBRBBR相信你已经发现规律了,没错!就是第i个字符串=第i-1号字符串取反+第
- 华为OD机试 2025 B卷 - We are a Team (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机考2025B卷华为OD机试2025B卷华为OD机试
WeareaTeam华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述总共有n个人在机房,每个人有一个标号(1<=标号<=n),他们分成了多个团队,需要你根据收到的m条消息判定指定的两个人是否在一个团队中,具体的:消息构成为abc,整数a、b分别代表两个人的标号,整数c代表指令c==0代表a和b在一个团队内c==1
- 华为OD 面试手撕真题目录
无限码力
华为OD面试手撕代码真题合集华为od面试华为OD面试手撕真题
华为OD面试手撕真题目录,收集的都是实际面试出现过的手撕代码真题,对于是力扣原题的我会在对应题目博客中给出对应对应链接,推荐自己写代码去通过。华为OD机试2025B卷真题题库目录|机考题库+算法考点详解目录序号题目名称考点1求1-n的最小公倍数数学原理2判断是IPV4还是IPV6字符串、模拟3旋转矩阵模拟4
- 数据并表技术全面指南:从基础JOIN到分布式数据融合
熊猫钓鱼>_>
分布式
引言在现代数据处理和分析领域,数据并表(TableJoin)技术是连接不同数据源、整合分散信息的核心技术。随着企业数据规模的爆炸式增长和数据源的日益多样化,传统的数据并表方法面临着前所未有的挑战:性能瓶颈、内存限制、数据倾斜、一致性问题等。如何高效、准确地进行大规模数据并表,已成为数据工程师和架构师必须掌握的关键技能。数据并表不仅仅是简单的SQLJOIN操作,它涉及数据建模、算法优化、分布式计算、
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- nuc10黑苹果无法wifi上网
家里小书房重新整理了下,也想放一台mac台式机用来工作学习,可惜公司已经有一台macmini,手头又有macpro,实在不好意思再购一台mac台式机。就打算重新把nuc10安装黑苹果。具体的nuc10黑苹果安装参考https://zhuanlan.zhihu.com/p/146191643安装好了后,一切都正常,就是没有wifi。这里记录下解决方案:下载wifi驱动https://github.c
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- 1290.二进制链表转整数
咔咔咔的
leetcodec++
1290.二进制链表转整数题目链接:1290.二进制链表转整数代码如下:/***Definitionforsingly-linkedlist.*structListNode{*intval;*ListNode*next;*ListNode():val(0),next(nullptr){}*ListNode(intx):val(x),next(nullptr){}*ListNode(intx,Lis
- c语言找出递增子数组的长度,C语言实现最长递增子序列问题的解决方法
梁肖松
c语言找出递增子数组的长度
本文实例展示了C语言实现最长递增子序列问题的解决方法。分享给大家供大家参考。具体方法如下:问题描述:给定一个序列,找出其最长递增子序列长度。比如输入1375输出3算法解决思路:利用动态规划的思想,以序列的每个点最为最右端,找出每个点作为最右端时的子序列长度的最大值,即问题的求解。因此,在计算前面的每个点的时候,将其结果保存下来,后面的点与前面的点的数值进行比较,如果大,则在其长度基础上加1,并且找
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- LeetCode第337题_打家劫舍III
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习
LeetCode第337题:打家劫舍III文章摘要本文详细解析LeetCode第337题"打家劫舍III",这是一道中等难度的二叉树动态规划问题。文章提供了基于深度优先搜索和动态规划的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升二叉树和动态规划能力的程序员。核心知识点:二叉树、动态规划、深度优先搜索难度等级:中等推荐人群:具有基础数据结构知识,想要提
- c++学习 | MFC —— 串口通信(一)串口设置
驚蟄_
c++mfcc++学习
文章目录一、目标二、使用步骤1.打开串口2.设置串口3.显示串口状态3.关闭串口3.串口设置更改事件4.打开关闭串口按钮三、完整代码一、目标实现串口通信的上位机。二、使用步骤1.打开串口头文件.h中public://自定义变量HANDLEm_hCom;//串口句柄volatileintm_bConnected;//串口连接成功指示public://串口相关函数BOOLOpenComm(intNum
- 【数据结构】双向链表
xiaofann_
数据结构数据结构链表
尾插图解中间插入图解List.h代码#pragmaonce#include#include#include#includetypedefintLTDataType;typedefstructListNode{structListNode*next;structListNode*prev;//头节点LTDataTypedata;}LTNode;LTNode*LTInit();voidLTDestro
- C++ | 基于PCL与CloudCompare的投影点密度法(DOPP)开发实战
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
一、算法原理与详细步骤1.算法原理DOPP是一种用于点云地面滤波的算法,通过将三维点云投影到二维平面,并分析投影点密度的分布特征来区分地面点与非地面点(如植被、建筑物等)。其核心思想是:地面点在投影平面上通常呈现均匀且低密度的分布,而建筑物点等非地面点则密度高。DOPP本质是二维密度场分析,将三维分离问题转化为二维空间密度统计问题。2.算法详细步骤(1)点云投影(Projection)将三维点云沿
- C++ | 玩转点云:CloudCompare & PCL原生开发核心指南与示例分享
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
还在为点云处理的效率瓶颈和功能限制发愁吗?面对点云处理个性需求,是否让你感到束手束脚?调试困难、性能受限、定制化需求难以满足...本次分享将带你深入核心,走进点云深处,揭秘如何直接运用C++进行CloudCompare&PCL的原生集成开发。掌握核心步骤,规避常见陷阱,并附实用开发示例源码。助你:效率飙升:直达底层,性能最大化!灵活无限:自由定制算法流程,深度集成业务逻辑!掌控全局:彻底理解框架机
- Java:对给定的字符串和给定的模式执行Boyer-Moore搜索算法(附带源码)
Katie。
Java算法完整教程java开发语言
一、项目背景详细介绍在文本处理与信息检索中,需要在海量文本中高效地查找模式串(Pattern)。经典的朴素搜素在最坏情况下时间复杂度为O(N·M),效率不够高。Boyer–Moore算法则采用“坏字符”与“好后缀”两种启发规则,从模式尾部匹配开始,通常能大幅跳过不可能匹配的位置,平均时间复杂度接近O(N/M),在实际应用(如grep、数据库索引)中非常高效。本项目旨在用Java实现Boyer–Mo
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f