需求是做一个简单的网页前后台分离服务,实现获得页面输入的起始时间段,后台计算多个量化指标,完成图形后,在前台实现分页签的可视化展示。 作为演示,选定“前30名涨跌幅、换手率(正排倒排)、成交量(正排倒排)”
技术基础参考利用 Flask 动态展示 Pyecharts 图表数据的几种方法一文中“Flask 前后端分离”部分,不再赘述。 主要思路是一次查询,一次计算形成结果集(dataform),并根据dataform的对应标的代码和不同指标,形成分别涨跌幅、换手率和成交图表,在前端页对应三个页签显示。
主要难点是:
pyecharts的Tab对象没有dump_options_with_quotes()方法,所以只能利用html的tab对象,后台需要把多个图形按适当方式传递到前台,前台解析后再匹配到对应的组件。
目录
- templates(页面目录)-mdStat2.html
-404.html
- util(后台目录)-dataProcess.py (数据处理)
-drawChart.py(画图)
-Utility.py(函数工具)
-firstServer.py(flask启动程序)
入口页面:
查询股票指标报告
// jquery引入
//Echarts引入
// 查询form
//tab页签对象
dataProcess.py和Utility.py 略过(一查一大把)最后形成,结果列表
ts_code name industry incease_rate turn_over volumn
600036 招商银行 银行 …
…
排序后即可绘图
drawChart.py
''
Created on 2023-9-3
@author: 13795
'''
from pyecharts.charts import Bar, Grid
from pyecharts import options as opts
from pyecharts.globals import ThemeType
#import os
def draw_report(df_result):
grid_increase = Grid()
#涨幅排序,第一个图
df_stock_increase=df_result.sort_values(by=['increaseCloseRate'], ascending=False)
print('df_stock_increase',df_stock_increase)
df_stock_increase=df_stock_increase[0:30]
bar1=Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
x1=df_stock_increase['ts_code'].tolist()
y1=df_stock_increase["increaseCloseRate"].tolist()
bar1.add_xaxis(x1)
bar1.add_yaxis('总涨幅',y1)
bar1.set_global_opts(title_opts=opts.TitleOpts(title="涨幅", subtitle="按涨幅排序")
,xaxis_opts=opts.AxisOpts(name='股票'
,name_textstyle_opts=opts.TextStyleOpts(font_size=13)
,axislabel_opts=opts.LabelOpts(font_size=10,rotate=15)
)##坐标轴标签的格式配置
,yaxis_opts=opts.AxisOpts(name = '涨幅',position='right'))
bar1.set_series_opts(label_opts=opts.LabelOpts(position='right',color='red',font_size=8))
bar1.reversal_axis()
grid_increase.add(bar1,grid_opts=opts.GridOpts(pos_left="50%",height="100%"))
#换手率,第二个图标
#降幅排序
df_stock_decrease=df_result.sort_values(by=['increaseCloseRate'], ascending=True)
print('df_stock_decrease',df_stock_increase)
df_stock_decrease=df_stock_decrease[0:30]
bar2=Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
x=df_stock_decrease['ts_code'].tolist()
y1=df_stock_decrease["increaseCloseRate"].tolist()
bar2.add_xaxis(x)
bar2.add_yaxis('总跌幅',y1)
bar2.set_global_opts(title_opts=opts.TitleOpts(title="跌幅", subtitle="按跌幅排序")
,xaxis_opts=opts.AxisOpts(name_textstyle_opts=opts.TextStyleOpts(font_size=13)
,axislabel_opts=opts.LabelOpts(font_size=10,rotate=15)
)##坐标轴标签的格式配置
,yaxis_opts=opts.AxisOpts(name = '跌幅'))
bar2.set_series_opts(label_opts=opts.LabelOpts(position='left',color='blue',font_size=8))
bar2.reversal_axis()
grid_increase.add(bar2,grid_opts=opts.GridOpts(pos_right="50%",height="100%"))
#第二个图
grid_turnover = Grid()
#换手率排序
df_turnover_increase=df_result.sort_values(by=['turnover_mean'], ascending=False)
print('df_turnover_increase',df_turnover_increase)
df_turnover_increase=df_turnover_increase[0:30]
bar3=Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
x=df_turnover_increase['ts_code'].tolist()
y1=df_turnover_increase["turnover_mean"].tolist()
bar3.add_xaxis(x)
bar3.add_yaxis('换手率最高',y1)
bar3.set_global_opts(title_opts=opts.TitleOpts(title="换手率", subtitle="按换手最多")
,xaxis_opts=opts.AxisOpts(name_textstyle_opts=opts.TextStyleOpts(font_size=13)
,axislabel_opts=opts.LabelOpts(font_size=10,rotate=15)
)##坐标轴标签的格式配置
,yaxis_opts=opts.AxisOpts(name = '换手率最多',position='right'))
bar3.set_series_opts(label_opts=opts.LabelOpts(position='right',color='red',font_size=8))
bar3.reversal_axis()
grid_turnover.add(bar3,grid_opts=opts.GridOpts(pos_top="50%",pos_left="50%",height="100%"))
df_turnover_decrease=df_result.sort_values(by=['turnover_mean'], ascending=True)
print('df_turnover_decrease',df_turnover_decrease)
df_turnover_decrease=df_turnover_decrease[0:30]
bar4=Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
x=df_turnover_decrease['ts_code'].tolist()
y1=df_turnover_decrease["turnover_mean"].tolist()
bar4.add_xaxis(x)
bar4.add_yaxis('换手率最低',y1)
bar4.set_global_opts(title_opts=opts.TitleOpts(title="换手率", subtitle="按换手率最低")
,xaxis_opts=opts.AxisOpts(name_textstyle_opts=opts.TextStyleOpts(font_size=13)
,axislabel_opts=opts.LabelOpts(font_size=10,rotate=15)
)##坐标轴标签的格式配置
,yaxis_opts=opts.AxisOpts(name = '换手率最低'))
bar4.set_series_opts(label_opts=opts.LabelOpts(position='right',color='blue',font_size=8))
bar4.reversal_axis()
grid_turnover.add(bar4,grid_opts=opts.GridOpts(pos_top="50%",pos_right="50%",height="100%"))
return grid_increase,grid_turnover #返回
grid_increase对应涨跌幅页面,grid_turnover对应换手率排序页面
对应的页面控制跳转及flask启动程序 firstserver.sh
#coding=gbk
'''
Created on 2023-7-2
@author: 13795
'''
from flask import Flask,render_template, request
#from pyecharts.charts import Bar
from pyecharts import options as opts
import util.Uitility as ut
import util.dataProcess as dp
import util.drawChart1 as dw
#from jinja2.utils import markupsafe
import json
app = Flask(__name__)
#def first():
# return "这是我的第一个flask程序!
"
@app.route('/mdStat2')
def mdStat1():
#计算个股和板块在一段时间内基本统计信息
data = request.args.to_dict()
return render_template("mdStat2.html", result_json=data)
@app.route("/index2")
def index2():
c = bar_base()
return markupsafe.Markup(c.render_embed())
#return render_template("index.html")
@app.route("/DataStat1", methods=['GET', 'POST'])
def get_dataStat1():
#统计信息
startDate=request.form.get('startDate')
endDate=request.form.get('endDate')
dp1=dp.dataProcess()
if ut.checkDate(startDate,endDate):
df_result=dp1.cal_report(startDate,endDate)
#print('result',df_result)
chart1,chart2=dw.draw_report(df_result)
resultChart={"chart1":chart1.dump_options_with_quotes(),"chart2":chart2.dump_options_with_quotes()}
result=json.dumps(resultChart)
#return chart1.dump_options_with_quotes(),chart2.dump_options_with_quotes()
return result
else:
return 'error date input'
if __name__ == '__main__':
app.run(host='0.0.0.0')
注意返回页面需要ajax提交跳转"/DataStat1"对应的处理函数get_dataStat1()中按json方式拼接 resultChart={“chart1”:chart1.dump_options_with_quotes(),“chart2”:chart2.dump_options_with_quotes()}
而在页面mdStat中 ,需要把获得JSON对象转换为javascript对象,即ch1=$.parseJSON(result[“chart1”])…,否则会报错 ,说明参考
jquery each报 Uncaught TypeError: Cannot use ‘in’ operator to search for错误