若 A ⊂ B 若A\sub B 若A⊂B,则:
A ∪ B = B A\cup B=B A∪B=B
A B = A AB=A AB=A
A ∪ ( B − A ) = B A\cup (B-A)=B A∪(B−A)=B
(1)
得 A ∪ ( B − A ) = A ∪ B = B A\cup (B-A)=A\cup B=B A∪(B−A)=A∪B=B若 A ⊂ B A\sub{B} A⊂B,则 A B = A AB=A AB=A, A ∪ B = B A\cup{B}=B A∪B=B
A ⊂ ( A ∪ B ) A\subset (A\cup B) A⊂(A∪B)
$AB\sub A ; ; ;AB\sub{B}$
A B ∪ B = B ; A ∪ ( A B ) = A AB\cup B=B;A\cup (AB)=A AB∪B=B;A∪(AB)=A
A ( A ∪ B ) = A A(A\cup B)=A A(A∪B)=A
A ( B − A ) = ∅ A(B-A)=\varnothing A(B−A)=∅
Commutative Law
Associative Law
A ∩ ( B ∪ C ) A\cap(B\cup{C}) A∩(B∪C)= A B ∪ A C AB\cup{AC} AB∪AC
A ∪ ( B ∩ C ) A\cup(B\cap{C}) A∪(B∩C)= ( A ∪ B ) ∩ ( A ∪ C ) (A\cup B)\cap{(A\cup C)} (A∪B)∩(A∪C)
分配律衍生公式
( A ∪ B ) ∩ ( C ∪ D ) (A\cup{B})\cap(C\cup{D}) (A∪B)∩(C∪D)= ( ( A ∪ B ) ∩ C ) ∪ ( ( A ∪ B ) ∩ D ) ((A\cup{B})\cap C)\cup((A\cup{B})\cap{D}) ((A∪B)∩C)∪((A∪B)∩D)= ( ( A ∩ C ) ∪ ( B ∩ C ) ) ∪ ( A ∩ D ) ∪ ( B ∩ D ) ) ((A\cap C)\cup{(B\cap C)})\cup{(A\cap D)\cup{(B\cap D)}}) ((A∩C)∪(B∩C))∪(A∩D)∪(B∩D))= A C ∪ A D ∪ B C ∪ B D AC\cup{AD}\cup{BC}\cup{BD} AC∪AD∪BC∪BD
( A ∩ B ) ∪ ( C ∩ D ) (A\cap{B})\cup(C\cap{D}) (A∩B)∪(C∩D)= ( A ∪ C ) ∩ ( A ∪ D ) ∩ ( B ∪ C ) ∩ ( B ∪ D ) (A\cup{C})\cap{(A\cup{D})}\cap{(B\cup{C})}\cap(B\cup{D}) (A∪C)∩(A∪D)∩(B∪C)∩(B∪D)
分配和展开规则类似于代数运算求和式中的乘法对加法的分配律:
A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B} A∪B=A∩B
A ∩ B ‾ \overline{A\cap{B}} A∩B= A ‾ ∪ B ‾ \overline{A}\cup{\overline{B}} A∪B
demorgan Law 揭示了和事件于积事件之间的转换关系.以及对立事件之间的转换
⋂ i = 1 n A i ‾ \overline{\bigcap_{i=1}^{n}A_i} ⋂i=1nAi= ⋃ i = 1 n A i ‾ \bigcup_{i=1}^{n}\overline{A_{i}} ⋃i=1nAi
⋃ i = 1 n A i ‾ \overline{\bigcup_{i=1}^{n}A_i} ⋃i=1nAi= ⋂ i = 1 n A i ‾ \bigcap_{i=1}^{n}\overline{A_{i}} ⋂i=1nAi
(1)
,则 A ∪ B = Ω A\cup{B}=\Omega A∪B=Ω(1)
两边同时和 B B B取交,则 ( A B ) B (AB)B (AB)B= A ‾ B ‾ B \overline{A}\;\overline{B}B ABB;从而 ( A B ) B = A ( B B ) = A B = ∅ (AB)B=A(BB)=AB=\emptyset (AB)B=A(BB)=AB=∅,(2)
(1)
两边取逆运算: A B ‾ \overline{AB} AB= A ∪ B A\cup{B} A∪B(3)
(2)
代入(3)
得: A ∪ B = Ω A\cup{B}=\Omega A∪B=Ω即样本空间全集,或说是必然事件设 A ∪ C A\cup{C} A∪C= B ∪ C B\cup{C} B∪C(1)
;且 C − A = C − B C-A=C-B C−A=C−B(2)
,则 A B ‾ ∪ A ‾ B A\overline{B}\cup{\overline{A}B} AB∪AB= ∅ \emptyset ∅(3)
显然我们需要将 C C C事件运用所给条件消去
有两种手法:
方法1:
由(1)
得 A ‾ C ‾ \overline{A}\;\overline{C} AC= B ‾ C ‾ \overline{B}\;\overline{C} BC(1.1)
由(2)
得 C A ‾ C\overline{A} CA= C B ‾ C\overline{B} CB(2.1)
(1.1)
∪ \cup ∪(2.1)
: A ‾ ∪ ( C ‾ C ) \overline{A}\cup(\overline{C}{C}) A∪(CC)= B ‾ ∪ ( C ‾ C ) \overline{B}\cup(\overline{C}C) B∪(CC)
即 A ‾ = B ‾ \overline{A}=\overline{B} A=B,从而 A = B A=B A=B
A B ‾ ∪ A ‾ B A\overline{B}\cup{\overline{A}B} AB∪AB= A A ‾ ∪ A ‾ A A\overline{A}\cup{\overline{A}A} AA∪AA= ∅ \emptyset ∅,即(3)
成立
(1)-(2)
(3)
成立在事件的和积混合运算中, ∪ , ∩ \cup,\cap ∪,∩的优先级类似于代数运算中的 + , × +,\times +,×运算, ∩ \cap ∩具有更高的优先级
并且从左到右,遵循内优先的运算
差运算的优先级一般比较低
例如 A ∪ A B A\cup{A}B A∪AB= A ∪ ( A ∩ B ) A\cup({A}\cap{B}) A∪(A∩B)= A B AB AB;
A ( A ∪ B ) = A A(A\cup B)=A A(A∪B)=A
A ∪ ( A B ) = A A\cup(AB)=A A∪(AB)=A
Note:
A − B = A − A B = A B ‾ A-B=A-AB=A\overline{B} A−B=A−AB=AB
A ( B − A ) = ∅ A (B-A)=\varnothing A(B−A)=∅
A ∪ B = A ∪ ( B − A ) A\cup B=A\cup (B-A) A∪B=A∪(B−A)