PT@事件间的运算规律

文章目录

    • abstract
    • 事件间的运算规律
      • 基本事实
        • 全集(必然事件)&空集(不可能事件)相关运算
        • 前提和相应真命题
        • 恒等式
      • 自反律
      • 交换律
      • 结合律
      • 分配律
      • 对偶律(德摩根律)
      • 附加定理
      • 消去律不成立
      • 判定事件为空
      • 小结
      • 运算优先级
    • 导出运算律
      • 吸收律
      • 差事件和积事件的转换公式

abstract

  • 事件运算规律和例题

事件间的运算规律

  • 运算定律的描述对象是运算符,某些运算定律的描述涉及多个(种)运算符

基本事实

全集(必然事件)&空集(不可能事件)相关运算

  • ∅ = Ω ‾ \varnothing=\overline{\Omega} =Ω
  • Ω = ∅ ‾ \Omega=\overline{\varnothing} Ω=
  • A Ω = A A\Omega=A AΩ=A
  • ∅ ∩ A = ∅ \varnothing \cap A=\varnothing A=
  • ∅ ∪ A = A \varnothing \cup A=A A=A
  • A ∪ A ‾ A\cup{\overline{A}} AA= Ω \Omega Ω
  • A ∩ A A\cap{A} AA= ∅ \emptyset

前提和相应真命题

  • 若 A ⊂ B 若A\sub B AB,则:

    1. A ∪ B = B A\cup B=B AB=B

    2. A B = A AB=A AB=A

    3. A ∪ ( B − A ) = B A\cup (B-A)=B A(BA)=B

      • A ∪ ( B − A ) A\cup{(B-A)} A(BA)= ( A ∪ ( B A ‾ ) ) (A\cup{(B\overline{A})}) (A(BA))= ( A ∪ B ) ∩ ( A ∪ A ‾ ) (A\cup{B})\cap{(A\cup{\overline{A}})} (AB)(AA)= A ∪ B A\cup{B} AB
      • (1) A ∪ ( B − A ) = A ∪ B = B A\cup (B-A)=A\cup B=B A(BA)=AB=B

恒等式

  • A ⊂ B A\sub{B} AB,则 A B = A AB=A AB=A, A ∪ B = B A\cup{B}=B AB=B

  • A ⊂ ( A ∪ B ) A\subset (A\cup B) A(AB)

    • ∪ \cup 优先级比 ⊂ \sub 高因此可以不加括号,即 B ⊂ A ∪ B B\sub A\cup B BAB
  • $AB\sub A ; ; ;AB\sub{B}$

  • A B ∪ B = B ; A ∪ ( A B ) = A AB\cup B=B;A\cup (AB)=A ABB=B;A(AB)=A

  • A ( A ∪ B ) = A A(A\cup B)=A A(AB)=A

  • A ( B − A ) = ∅ A(B-A)=\varnothing A(BA)=

自反律

  • A ∩ A = A A\cap A=A AA=A
  • A ∪ A = A A\cup A=A AA=A

交换律

Commutative Law

  • A ∪ B A\cup{B} AB= B ∪ A B\cup{A} BA
  • A ∩ B A\cap{B} AB= B ∩ A B\cap{A} BA

结合律

Associative Law

  • A ∪ ( B ∪ C ) A\cup({B}\cup{C}) A(BC)= ( A ∪ B ) ∪ C (A\cup{B})\cup{C} (AB)C
  • A ∩ ( B ∩ C ) A\cap({B}\cap{C}) A(BC)= ( A ∩ B ) ∩ C (A\cap{B})\cap{C} (AB)C

分配律

  • A ∩ ( B ∪ C ) A\cap(B\cup{C}) A(BC)= A B ∪ A C AB\cup{AC} ABAC

  • A ∪ ( B ∩ C ) A\cup(B\cap{C}) A(BC)= ( A ∪ B ) ∩ ( A ∪ C ) (A\cup B)\cap{(A\cup C)} (AB)(AC)

  • 分配律衍生公式

    • ( A ∪ B ) ∩ ( C ∪ D ) (A\cup{B})\cap(C\cup{D}) (AB)(CD)= ( ( A ∪ B ) ∩ C ) ∪ ( ( A ∪ B ) ∩ D ) ((A\cup{B})\cap C)\cup((A\cup{B})\cap{D}) ((AB)C)((AB)D)= ( ( A ∩ C ) ∪ ( B ∩ C ) ) ∪ ( A ∩ D ) ∪ ( B ∩ D ) ) ((A\cap C)\cup{(B\cap C)})\cup{(A\cap D)\cup{(B\cap D)}}) ((AC)(BC))(AD)(BD))= A C ∪ A D ∪ B C ∪ B D AC\cup{AD}\cup{BC}\cup{BD} ACADBCBD

      • 运用的是 ∩ \cap ∪ \cup 的分配律: ( A ∪ B ) ∩ ( C ∪ D ) \boxed{(A\cup{B})\cap}(C\cup{D}) (AB)(CD);
    • ( A ∩ B ) ∪ ( C ∩ D ) (A\cap{B})\cup(C\cap{D}) (AB)(CD)= ( A ∪ C ) ∩ ( A ∪ D ) ∩ ( B ∪ C ) ∩ ( B ∪ D ) (A\cup{C})\cap{(A\cup{D})}\cap{(B\cup{C})}\cap(B\cup{D}) (AC)(AD)(BC)(BD)

      • 运用的是 ∪ \cup ∩ \cap 的分配律: ( A ∩ B ) ∪ ( C ∩ D ) \boxed{(A\cap{B})\cup}(C\cap{D}) (AB)(CD)
  • 分配和展开规则类似于代数运算求和式中的乘法对加法的分配律:

    • ( A + B ) ( C + D ) = A C + A D + B C + B D (A+B)(C+D)=AC+AD+BC+BD (A+B)(C+D)=AC+AD+BC+BD
    • ∪ , ∩ \cup,\cap ,可分别类比于 + , × +,\times +,×(或者对调: × , + \times,{+} ×,+)

对偶律(德摩根律)

  • A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B} AB=AB

    • A ∪ B A\cup B AB= A ∪ B ‾ ‾ \overline{\overline{A\cup{B}}} AB= A ‾ ∩ B ‾ ‾ \overline{\overline{A}\cap\overline{B}} AB
  • A ∩ B ‾ \overline{A\cap{B}} AB= A ‾ ∪ B ‾ \overline{A}\cup{\overline{B}} AB

    • A ∩ B A\cap{B} AB= A ∩ B ‾ ‾ \overline{\overline{A\cap{B}}} AB= A ‾ ∪ B ‾ ‾ \overline{\overline{A}\cup{\overline{B}}} AB
  • demorgan Law 揭示了和事件积事件之间的转换关系.以及对立事件之间的转换

    • 这使得我们可以比较容易的在交事件和积事件(表达式)间变化形式(它们的对立事件也是)
  • ⋂ i = 1 n A i ‾ \overline{\bigcap_{i=1}^{n}A_i} i=1nAi= ⋃ i = 1 n A i ‾ \bigcup_{i=1}^{n}\overline{A_{i}} i=1nAi

  • ⋃ i = 1 n A i ‾ \overline{\bigcup_{i=1}^{n}A_i} i=1nAi= ⋂ i = 1 n A i ‾ \bigcap_{i=1}^{n}\overline{A_{i}} i=1nAi

附加定理

  • A = B A=B A=B,则 A C = B C AC=BC AC=BC; A ∪ C = B ∪ C A\cup{C}=B\cup{C} AC=BC

消去律不成立

  • 附加定理但是其逆命题不成立,即 A C = B C AC=BC AC=BC ⇏ \not\Rightarrow A = B A=B A=B; A ∪ C = B ∪ C A\cup{C}=B\cup{C} AC=BC ⇏ \not\Rightarrow A = B A=B A=B

判定事件为空

  • A B = ∅ AB=\empty AB= ⇏ \not\Rightarrow A = ∅ A=\emptyset A= B = ∅ B=\emptyset B=;这只能说明 A , B A,B A,B没有公共元素而已

  • ( A ∪ B ) ( A ‾ ∪ B ) ( A ∪ B ‾ ) ( A ‾ ∪ B ‾ ) (A\cup{B})(\overline{A}\cup{B})(A\cup\overline{B})(\overline{A}\cup{\overline{B}}) (AB)(AB)(AB)(AB)
  • 方法1
    • ( A ∪ B ) ( A ‾ ∪ B ) (A\cup{B})(\overline{A}\cup{B}) (AB)(AB)= ( A A ‾ ) ∪ B (A\overline{A})\cup{B} (AA)B= B B B
    • ( A ∪ B ‾ ) ( A ‾ ∪ B ‾ ) (A\cup{\overline{B}})(\overline{A}\cup{\overline{B}}) (AB)(AB)= ( A A ‾ ) ∪ B ‾ (A\overline{A})\cup{\overline{B}} (AA)B= B ‾ \overline{B} B
    • B B ‾ = ∅ B\overline{B}=\emptyset BB=
  • 方法2
    • = ( A A ‾ ∪ A B ∪ B A ‾ ∪ B B ) (A\overline{A}\cup{AB}\cup{B\overline{A}}\cup{BB}) (AAABBABB) ( A A ‾ ∪ A B ‾ ∪ B ‾    A ‾ ∪ B ‾    B ‾ ) (A\overline{A}\cup{A}\overline{B}\cup{\overline{B}\;\overline{A}}\cup{\overline{B}\;\overline{B}}) (AAABBABB)
    • = ( ( A ∪ A ‾ ) B ∪ B ) ( ( A ∪ A ‾ ) B ‾ ∪ B ‾ ) ((A\cup{\overline{A}})B\cup{B})((A\cup{\overline A})\overline{B}\cup{\overline{B}}) ((AA)BB)((AA)BB)
    • = B B ‾ B\overline{B} BB= ∅ \emptyset

  • A B = A ‾    B ‾ AB=\overline{A}\;\overline{B} AB=AB(1),则 A ∪ B = Ω A\cup{B}=\Omega AB=Ω
  • (1)两边同时和 B B B取交,则 ( A B ) B (AB)B (AB)B= A ‾    B ‾ B \overline{A}\;\overline{B}B ABB;从而 ( A B ) B = A ( B B ) = A B = ∅ (AB)B=A(BB)=AB=\emptyset (AB)B=A(BB)=AB=,(2)
  • (1)两边取逆运算: A B ‾ \overline{AB} AB= A ∪ B A\cup{B} AB(3)
  • (2)代入(3)得: A ∪ B = Ω A\cup{B}=\Omega AB=Ω即样本空间全集,或说是必然事件

  • A ∪ C A\cup{C} AC= B ∪ C B\cup{C} BC(1);且 C − A = C − B C-A=C-B CA=CB(2),则 A B ‾ ∪ A ‾ B A\overline{B}\cup{\overline{A}B} ABAB= ∅ \emptyset (3)

  • 显然我们需要将 C C C事件运用所给条件消去

  • 有两种手法:

    • 方法1:

      • (1) A ‾    C ‾ \overline{A}\;\overline{C} AC= B ‾    C ‾ \overline{B}\;\overline{C} BC(1.1)

      • (2) C A ‾ C\overline{A} CA= C B ‾ C\overline{B} CB(2.1)

      • (1.1) ∪ \cup (2.1): A ‾ ∪ ( C ‾ C ) \overline{A}\cup(\overline{C}{C}) A(CC)= B ‾ ∪ ( C ‾ C ) \overline{B}\cup(\overline{C}C) B(CC)

      • A ‾ = B ‾ \overline{A}=\overline{B} A=B,从而 A = B A=B A=B

      • A B ‾ ∪ A ‾ B A\overline{B}\cup{\overline{A}B} ABAB= A A ‾ ∪ A ‾ A A\overline{A}\cup{\overline{A}A} AAAA= ∅ \emptyset ,即(3)成立

    • (1)-(2)

      • ( A ∪ C ) − ( C − A ) (A\cup{C})-{(C-A)} (AC)(CA)= ( B ∪ C ) − ( C − B ) (B\cup{C})-(C-B) (BC)(CB)
        • ( A ∪ C ) − C A ‾ (A\cup{C})-C\overline{A} (AC)CA= ( A ∪ C ) ( C ‾ ∪ A ) (A\cup{C})(\overline{C}\cup{A}) (AC)(CA)= A ∪ ( C C ‾ ) A\cup(C\overline{C}) A(CC)= A A A
        • ( B ∪ C ) − C B ‾ (B\cup{C})-C\overline{B} (BC)CB= ( B ∪ C ) ( C ‾ ∪ B ) (B\cup{C})(\overline{C}\cup{B}) (BC)(CB)= B ∪ ( C C ‾ ) B\cup(C\overline{C}) B(CC)= B B B
      • 可见 A = B A=B A=B,从而 A B ‾ A\overline{B} AB= A A ‾ A\overline{A} AA= ∅ \emptyset ; A ‾ B \overline{A}{B} AB= B ‾ B \overline{B}B BB= ∅ \emptyset
      • 从而(3)成立

小结

  • 交运算和并运算都满足交换律和结合律
    • 注意,仅仅在非混合运算的时候成立,否则请考虑分配律!(或者从左往右运算)
    • 例如 A ∪ B = A ∪ ( A − B ) = A ∪ ( A B ‾ ) = 分配律 ( A ∪ A ) ∩ ( A ∪ B ‾ ) = A ( A ∪ B ‾ ) A\cup B=A\cup( A-B)=A\cup (A\overline{B})\xlongequal{分配律}(A\cup A)\cap (A\cup \overline{B})=A(A\cup \overline{B}) AB=A(AB)=A(AB)分配律 (AA)(AB)=A(AB)

运算优先级

  • 在事件的和积混合运算中, ∪ , ∩ \cup,\cap ,的优先级类似于代数运算中的 + , × +,\times +,×运算, ∩ \cap 具有更高的优先级

  • 并且从左到右,遵循内优先的运算

  • 差运算的优先级一般比较低

  • 例如 A ∪ A B A\cup{A}B AAB= A ∪ ( A ∩ B ) A\cup({A}\cap{B}) A(AB)= A B AB AB;

    • A − A B = A − ( A B ) A-AB=A-(AB) AAB=A(AB)

导出运算律

吸收律

  • A ( A ∪ B ) = A A(A\cup B)=A A(AB)=A

  • A ∪ ( A B ) = A A\cup(AB)=A A(AB)=A

  • Note:

    • 该定理的证可以从集合和事件的定义出发
    • A ∪ B A\cup B AB并事件试图扩充A,B事件所包含的样本点, A ⊂ ( A ∪ B ) A\sub{(A\cup{B})} A(AB)
    • A ∩ B A\cap B AB交事件试图将A,B包含的样本点收缩, ( A B ) ⊂ A {(A{B})\sub{A}} (AB)A

差事件和积事件的转换公式

  • A − B = A − A B = A B ‾ A-B=A-AB=A\overline{B} AB=AAB=AB

    • A − B = A − A B A-B=A-AB AB=AAB由于A的独占事件,B肯定不发生(也就是说,A的独占事件的发生,必定导致B的对立 B ‾ \overline{B} B发生)
    • 从积事件的角度上看,只有A和 B ‾ \overline{B} B同时发生这样的事件是A的独占事件
  • A ( B − A ) = ∅ A (B-A)=\varnothing A(BA)=

    • A ( B A ‾ ) A(B\overline{A}) A(BA)= ( A A ‾ ) B = ∅ (A\overline{A})B=\emptyset (AA)B=
  • A ∪ B = A ∪ ( B − A ) A\cup B=A\cup (B-A) AB=A(BA)

    • 从事件的定义可知等式显然成立
    • 或者 A ∪ ( B − A ) = A ∪ B A ‾ A\cup{(B-A)}=A\cup{B\overline{A}} A(BA)=ABA= ( A ∪ B ) ∩ ( A ∪ A ‾ ) (A\cup{B})\cap(A\cup{\overline{A}}) (AB)(AA)= A ∪ B A\cup{B} AB

你可能感兴趣的:(概率论,概率论)