RocketMQ消息模型
引入RocketMQ依赖
org.apache.rocketmq
rocketmq-client
4.9.5
ncy>
RocketMQ权限控制相关的核心依赖
org.apache.rocketmq
rocketmq-acl
4.9.5
一个最为简单的消息生产者代码如下:
public class Producer {
public static void main(String[] args) throws MQClientException, InterruptedException {
//初始化一个消息生产者
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
// 指定nameserver地址
producer.setNamesrvAddr("192.168.64.133:9876");
// 启动消息生产者服务
producer.start();
for (int i = 0; i < 2; i++) {
try {
// 创建消息。消息由Topic,Tag和body三个属性组成,其中Body就是消息内容
Message msg = new Message("TopicTest","TagA",("Hello RocketMQ " +i).getBytes(RemotingHelper.DEFAULT_CHARSET));
//发送消息,获取发送结果
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
Thread.sleep(1000);
}
}
//消息发送完后,停止消息生产者服务。
producer.shutdown();
}
}
一个简单的消息消费者代码如下:
public class Consumer {
public static void main(String[] args) throws InterruptedException, MQClientException {
//构建一个消息消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
//指定nameserver地址
consumer.setNamesrvAddr("192.168.64.133:9876");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
// 订阅一个感兴趣的话题,这个话题需要与消息的topic一致
consumer.subscribe("TopicTest", "*");
// 注册一个消息回调函数,消费到消息后就会触发回调。
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {
msgs.forEach(messageExt -> {
try {
System.out.println("收到消息:"+new String(messageExt.getBody(), RemotingHelper.DEFAULT_CHARSET));
} catch (UnsupportedEncodingException e) {}
});
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
//启动消费者服务
consumer.start();
System.out.print("Consumer Started");
}
}
1.创建消息生产者producer,并指定生产者组名
2.指定Nameserver地址
3.启动producer。 这个步骤比较容易忘记。可以认为这是消息生产者与服务端建立连接的过程。
4.创建消息对象,指定主题Topic、Tag和消息体
5.发送消息
6.关闭生产者producer,释放资源。
1.创建消费者Consumer,必须指定消费者组名
2.指定Nameserver地址
3.订阅主题Topic和Tag
4.设置回调函数,处理消息
5.启动消费者consumer。消费者会一直挂起,持续处理消息。
其中,最为关键的就是NameServer。从示例中可以看到,RocketMQ的客户端只需要指定NameServer地址,而不需要指定具体的Broker地址。
指定NameServer的方式有两种。可以在客户端直接指定,例如 consumer.setNameSrvAddr("127.0.0.1:9876")。然后,也可以通过读取系统环境变量NAMESRV_ADDR指定。其中第一种方式的优先级更高。
三种不同的消息发送方式
sendOneway()方法没有返回值,虽然效率高,容易丢失数据
public class OnewayProducer {
public static void main(String[] args)throws Exception{
DefaultMQProducer producer = new DefaultMQProducer("producerGroup");
producer.start();
Message message = new Message("Order","tag","order info : orderId = xxx".getBytes(StandardCharsets.UTF_8));
producer.sendOneway(message);
Thread.sleep(50000);
producer.shutdown();
}
}
生产者发送消息给broker,直到broker给予反馈才能继续其它的工作,否则一直等待broker反馈
SendResult sendResult = producer.send(msg);
在SendResult中有一个SendStatus属性,这个SendStatus是一个枚举类型,其中包含了Broker端的各种情况。
public enum SendStatus {
SEND_OK,
FLUSH_DISK_TIMEOUT,
FLUSH_SLAVE_TIMEOUT,
SLAVE_NOT_AVAILABLE,
}
SEND_OK表示消息已经成功发送到Broker上,其他几种枚举值,都是表示消息在Broker端处理失败了,Broker端返回的SendStatus不是SEND_OK,也并不表示消息就一定不会推送给下游消费者。仅仅只是表示broker端并没有完全正确的处理这些消息。因此,如果要重新发送消息,最好要带上唯一的系统标识,这样在消费者端才能自行做幂等判断。也就是为了不让消息重复消费,这种同步的方式如果网络问题而导致阻塞很长时间,显然不合适的
异步发送机制下,生产者在向Broker发送消息时,会同时注册一个回调函数。异步发送机制下,生产者在向Broker发送消息时,会同时注册一个回调函数
producer.send(msg, new SendCallback() {
@Override
public void onSuccess(SendResult sendResult) {
countDownLatch.countDown();
System.out.printf("%-10d OK %s %n", index, sendResult.getMsgId());
}
@Override
public void onException(Throwable e) {
countDownLatch.countDown();
System.out.printf("%-10d Exception %s %n", index, e);
e.printStackTrace();
}
});
在SendCallback接口中有两个方法,onSuccess和onException。当Broker端返回消息处理成功的响应信息SendResult时,就会调用onSuccess方法。当Broker端处理消息超时或者失败时,就会调用onExcetion方法,生产者就可以在onException方法中进行补救措施。
此时同样有几个问题需要注意。一是与同步发送机制类似,触发了SendCallback的onException方法同样并不一定就表示消息不会向消费者推送。如果Broker端返回响应信息太慢,超过了超时时间,也会触发onException方法。超时时间默认是3秒,可以通过producer.setSendMsgTimeout方法定制。而造成超时的原因则有很多,消息太大造成网络拥堵、网速太慢、Broker端处理太慢等都可能造成消息处理超时。
二是在SendCallback的对应方法被触发之前,生产者不能调用shutdown()方法。如果消息处理完之前,生产者线程就关闭了,生产者的SendCallback对应方法就不会触发。这是因为使用异步发送机制后,生产者虽然不用阻塞下来等待Broker端响应,但是SendCallback还是需要附属于生产者的主线程才能执行。如果Broker端还没有返回SendResult,而生产者主线程已经停止了,那么SendCallback的执行线程也就会随主线程一起停止,对应的方法自然也就无法执行了。
Broker等待消费者返回消息处理状态
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
这个返回值是一个枚举值,有两个选项 CONSUME_SUCCESS和RECONSUME_LATER。如果消费者返回CONSUME_SUCCESS,那么消息自然就处理结束了。但是如果消费者没有处理成功,返回的是RECONSUME_LATER,Broker就会过一段时间再发起消息重试。
为了要兼容重试机制的成功率和性能,RocketMQ设计了一套非常完善的消息重试机制,从而尽可能保证消费者能够正常处理用户的订单信息。
1、Broker不可能无限制的向消费失败的消费者推送消息。如果消费者一直没有恢复,Broker显然不可能一直无限制的推送,这会浪费集群很多的性能。所以,Broker会记录每一个消息的重试次数。如果一个消息经过很多次重试后,消费者依然无法正常处理,那么Broker会将这个消息推入到消费者组对应的死信Topic中。死信Topic相当于windows当中的垃圾桶。你可以人工介入对死信Topic中的消息进行补救,也可以直接彻底删除这些消息。RocketMQ默认的最大重试次数是16次。
2、为了让这些重试的消息不会影响Topic下其他正常的消息,Broker会给每个消费者组设计对应的重试Topic。MessageQueue是一个具有严格FIFO特性的数据结构。如果需要重试的这些消息还是放在原来的MessageQueue中,就会对当前MessageQueue产生阻塞,让其他正常的消息无法处理。RocketMQ的做法是给每个消费者组自动生成一个对应的重试Topic。在消息需要重试时,会先移动到对应的重试Topic中。后续Broker只要从这些重试Topic中不断拿出消息,往消费者组重新推送即可。这样,这些重试的消息有了自己单独的队列,就不会影响到Topic下的其他消息了。
3、RocketMQ中设定的消费者组都是订阅主题和消费逻辑相同的服务备份,所以当消息重试时,Broker只要往消费者组中随意一个实例推送即可。这是消息重试机制能够正常运行的基础。但是,在客户端的具体实现时,MQDefaultMQConsumer并没有强制规定消费者组不能重复。也就是说,你完全可以实现出一些订阅主题和消费逻辑完全不同的消费者服务,共同组成一个消费组。在这种情况下,RocketMQ不会报错,但是消息的处理逻辑就无法保持一致了。这会给业务带来很大的麻烦。这是在实际应用时需要注意的地方。
4、Broker端最终只通过消费者组返回的状态来确定消息有没有处理成功。至于消费者组自己的业务执行是否正常,Broker端是没有办法知道的。因此,在实现消费者的业务逻辑时,应该要尽量使用同步实现方式,保证在自己业务处理完成之后再向Broker端返回状态。而应该尽量避免异步的方式处理业务逻辑。
Broker端通过Consumer返回的状态来推进所属消费者组对应的Offset。
public enum ConsumeFromWhere {
CONSUME_FROM_LAST_OFFSET, //从队列的第一条消息开始重新消费
CONSUME_FROM_FIRST_OFFSET, //从上次消费到的地方开始继续消费
CONSUME_FROM_TIMESTAMP; //从某一个时间点开始重新消费
}
另外,如果指定了ConsumerFromWhere.CONSUME_FROM_TIMESTAMP,这就表示要从一个具体的时间开始。具体时间点,需要通过Consumer的另一个属性ConsumerTimestamp。这个属性可以传入一个表示时间的字符串。
consumer.setConsumerTimestamp("20131223171201");
广播模式和集群模式是RocketMQ的消费者端处理消息最基本的两种模式。集群模式下,一个消息,只会被一个消费者组中的多个消费者实例 共同 处理一次。广播模式下,一个消息,则会推送给所有消费者实例处理,不再关心消费者组。
示例代码:
消费者核心代码
consumer.setMessageModel(MessageModel.BROADCASTING);
启动多个消费者,广播模式下,这些消费者都会消费一次消息。
实现思路:
默认模式(也就是集群模式)下,Broker端会给每个ConsumerGroup维护一个统一的Offset,这个Offset可以保证一个消息,在同一个ConsumerGroup内只会被消费一次。而广播模式的实现方式,是将Offset转移到消费者端自行保管,这样Broker端只管向所有消费者推送消息,而不用负责维护消费进度。
注意点:
1、Broker端不维护消费进度,意味着,如果消费者处理消息失败了,将无法进行消息重试。
2、消费者端维护Offset的作用是可以在服务重启时,按照上一次消费的进度,处理后面没有消费过的消息。丢了也不影响服务稳定性。
比如生产者发送了1~10号消息。消费者当消费到第6个时宕机了。当他重启时,Broker端已经把第10个消息都推送完成了。如果消费者端维护好了自己的Offset,那么他就可以在服务重启时,重新向Broker申请6号到10号的消息。但是,如果消费者端的Offset丢失了,消费者服务依然可以正常运行,但是6到10号消息就无法再申请了。后续这个消费者就只能获取10号以后的消息。
实际上,Offset的维护数据是放在 ${user.home}/.rocketmq_offset/${clientIp}${instanceName}/${group}/offsets.json 文件下的。
消费者端存储广播消费的本地offsets文件的默认缓存目录是 System.getProperty(“user.home”) + File.separator + “.rocketmq_offsets” ,可以通过定制 rocketmq.client.localOffsetStoreDir 系统属性进行修改。
本地offsets文件在缓存目录中的具体位置与消费者的clientIp 和 instanceName有关。其中instanceName默认是DEFAULT,可以通过定制系统属性 rocketmq.client.name 进行修改。另外,每个消费者对象也可以单独设定instanceName。
RocketMQ会通过定时任务不断尝试本地Offsets文件的写入,但是,如果本地Offsets文件写入失败,RocketMQ不会进行任何的补救。
应用场景:
每一个订单有从下单、锁库存、支付、下物流等几个业务步骤。每个业务步骤都由一个消息生产者通知给下游服务。如何保证对每个订单的业务处理顺序不乱?
示例代码:
生产者核心代码:
for (int i = 0; i < 10; i++) {
int orderId = i;
for(int j = 0 ; j <= 5 ; j ++){
Message msg =
new Message("OrderTopicTest", "order_"+orderId, "KEY" + orderId,
("order_"+orderId+" step " + j).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List mqs, Message msg, Object arg) {
Integer id = (Integer) arg;
int index = id % mqs.size();
return mqs.get(index);
}
}, orderId);
System.out.printf("%s%n", sendResult);
}
}
通过MessageSelector,将orderId相同的消息,都转发到同一个MessageQueue中。
消费者核心代码:
consumer.registerMessageListener(new MessageListenerOrderly() {
@Override
public ConsumeOrderlyStatus consumeMessage(List msgs, ConsumeOrderlyContext context) {
context.setAutoCommit(true);
for(MessageExt msg:msgs){
System.out.println("收到消息内容 "+new String(msg.getBody()));
}
return ConsumeOrderlyStatus.SUCCESS;
}
});
注入一个MessageListenerOrderly实现。
实现思路:
基础思路:只有放到一起的一批消息,才有可能保持消息的顺序。
1、生产者只有将一批有顺序要求的消息,放到同一个MesasgeQueue上,Broker才有可能保持这一批消息的顺序。
2、消费者只有一次锁定一个MessageQueue,拿到MessageQueue上所有的消息,
注意点:
1、理解局部有序与全局有序。大部分业务场景下,我们需要的其实是局部有序。如果要保持全局有序,那就只保留一个MessageQueue。性能显然非常低。
2、生产者端尽可能将有序消息打散到不同的MessageQueue上,避免过于几种导致数据热点竞争。
2、消费者端只能用同步的方式处理消息,不要使用异步处理。更不能自行使用批量处理。
3、消费者端只进行有限次数的重试。如果一条消息处理失败,RocketMQ会将后续消息阻塞住,让消费者进行重试。但是,如果消费者一直处理失败,超过最大重试次数,那么RocketMQ就会跳过这一条消息,处理后面的消息,这会造成消息乱序。
4、消费者端如果确实处理逻辑中出现问题,不建议抛出异常,可以返回ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT作为替代。
应用场景:
延迟消息发送是指消息发送到Apache RocketMQ后,并不期望立马投递这条消息,而是延迟一定时间后才投递到Consumer进行消费。
虽然不太起眼,但是这是RocketMQ非常有特色的一个功能。对比下RabbitMQ和Kafka。RabbitMQ中只能通过使用死信队列变相实现延迟消息,或者加装一个插件来支持延迟消息。 Kafka则不太好实现延迟消息。
示例代码:
生产者端核心代码:
msg.setDelayTimeLevel(3);
只要给消息设定一个延迟级别就行了,无比简单。
RocketMQ给消息定制了18个默认的延迟级别,分别对应18个不同的预设好的延迟时间。
实现思路:
延迟消息的难点其实是性能,需要不断进行定时轮训。全部扫描所有消息是不可能的,RocketMQ的实现方式是预设一个系统Topic,名字叫做SCHEDULE_TOPIC_XXXX。在这个Topic下,预设18个延迟队列。然后每次只针对这18个队列里的消息进行延迟操作,这样就不用一直扫描所有的消息了。
注意点:
这样预设延迟时间其实是不太灵活的。5.x版本已经支持预设一个具体的时间戳,按秒的精度进行定时发送。
但是可以看到,这18个延迟级别虽然无法调整,但是每个延迟级别对应的延迟时间其实是可以调整的。只需要修改截图中的参数就行。不过通常不建议这么做。
应用场景:
生产者要发送的消息比较多时,可以将多条消息合并成一个批量消息,一次性发送出去。这样可以减少网络IO,提升消息发送的吞吐量。
示例代码:
生产者核心代码:
List messages = new ArrayList<>();
messages.add(new Message(topic, "Tag", "OrderID001", "Hello world 0".getBytes()));
messages.add(new Message(topic, "Tag", "OrderID002", "Hello world 1".getBytes()));
messages.add(new Message(topic, "Tag", "OrderID003", "Hello world 2".getBytes()));
producer.send(messages);
注意点:
批量消息的使用非常简单,但是要注意RocketMQ做了限制。同一批消息的Topic必须相同,另外,不支持延迟消息。
还有批量消息的大小不要超过1M,如果太大就需要自行分割。
应用场景:
同一个Topic下有多种不同的消息,消费者只希望关注某一类消息。
例如,某系统中给仓储系统分配一个Topic,在Topic下,会传递过来入库、出库等不同的消息,仓储系统的不同业务消费者就需要过滤出自己感兴趣的消息,进行不同的业务操作。
示例代码1:简单过滤
生产者端需要在发送消息时,增加Tag属性。比如我们上面举例当中的入库、出库。核心代码:
String[] tags = new String[] {"TagA", "TagB", "TagC"};
for (int i = 0; i < 15; i++) {
Message msg = new Message("TagFilterTest",
tags[i % tags.length],
"Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
}
消费者端就可以通过这个Tag属性订阅自己感兴趣的内容。核心代码:
consumer.subscribe("TagFilterTest", "TagA");
这样,后续Consumer就只会出处理TagA的消息。
示例代码2:SQL过滤
通过Tag属性,只能进行简单的消息匹配。如果要进行更复杂的消息过滤,比如数字比较,模糊匹配等,就需要使用SQL过滤方式。SQL过滤方式可以通过Tag属性以及用户自定义的属性一起,以标准SQL的方式进行消息过滤。
生产者端在发送消息时,出了Tag属性外,还可以增加自定义属性。核心代码:
String[] tags = new String[] {"TagA", "TagB", "TagC"};
for (int i = 0; i < 15; i++) {
Message msg = new Message("SqlFilterTest",
tags[i % tags.length],
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)
);
msg.putUserProperty("a", String.valueOf(i));
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
}
消费者端在进行过滤时,可以指定一个标准的SQL语句,定制复杂的过滤规则。核心代码:
consumer.subscribe("SqlFilterTest",
MessageSelector.bySql("(TAGS is not null and TAGS in ('TagA', 'TagB'))" +
"and (a is not null and a between 0 and 3)"));
实现思路:
实际上,Tags和用户自定义的属性,都是随着消息一起传递的,所以,消费者端是可以拿到消息的Tags和自定义属性的。比如:
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs,
ConsumeConcurrentlyContext context) {
for (MessageExt msg : msgs) {
System.out.println(msg.getTags());
System.out.println(msg.getProperties());
}
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
这样,剩下的就是在Consumer中对消息进行过滤了。Broker会在往Consumer推送消息时,在Broker端进行消息过滤。是Consumer感兴趣的消息,就往Consumer推送。
Tag属性的处理比较简单,就是直接匹配。而SQL语句的处理会比较麻烦一点。RocketMQ也是通过ANLTR引擎来解析SQL语句,然后再进行消息过滤的。
ANLTR是一个开源的SQL语句解析框架。很多开源产品都在使用ANLTR来解析SQL语句。比如ShardingSphere,Flink等。
注意点:
1、使用Tag过滤时,如果希望匹配多个Tag,可以使用两个竖线(||)连接多个Tag值。另外,也可以使用星号(*)匹配所有。
2、使用SQL顾虑时,SQL语句是按照SQL92标准来执行的。SQL语句中支持一些常见的基本操作:
2、消息过滤,其实在Broker端和在Consumer端都可以做。Consumer端也可以自行获取用户属性,不感兴趣的消息,直接返回不成功的状态,跳过该消息就行了。但是RocketMQ会在Broker端完成过滤条件的判断,只将Consumer感兴趣的消息推送给Consumer。这样的好处是减少了不必要的网络IO,但是缺点是加大了服务端的压力。不过在RocketMQ的良好设计下,更建议使用消息过滤机制。
3、Consumer不感兴趣的消息并不表示直接丢弃。通常是需要在同一个消费者组,定制另外的消费者实例,消费那些剩下的消息。但是,如果一直没有另外的Consumer,那么,Broker端还是会推进Offset。
应用场景:
事务消息是RocketMQ非常有特色的一个高级功能。他的基础诉求是通过RocketMQ的事务机制,来保证上下游的数据一致性。
以电商为例,用户支付订单这一核心操作的同时会涉及到下游物流发货、积分变更、购物车状态清空等多个子系统的变更。这种场景,非常适合使用RocketMQ的解耦功能来进行串联。
考虑到事务的安全性,即要保证相关联的这几个业务一定是同时成功或者同时失败的。如果要将四个服务一起作为一个分布式事务来控制,可以做到,但是会非常麻烦。而使用RocketMQ在中间串联了之后,事情可以得到一定程度的简化。由于RocketMQ与消费者端有失败重试机制,所以,只要消息成功发送到RocketMQ了,那么可以认为Branch2.1,Branch2.2,Branch2.3这几个分支步骤,是可以保证最终的数据一致性的。这样,一个复杂的分布式事务问题,就变成了MinBranch1和Branch2两个步骤的分布式事务问题。
然后,在此基础上,RocketMQ提出了事务消息机制,采用两阶段提交的思路,保证Main Branch1和Branch2之间的事务一致性。
具体的实现思路是这样的:
实现时的重点是使用RocketMQ提供的TransactionMQProducer事务生产者,在TransactionMQProducer中注入一个TransactionListener事务监听器来执行本地事务,以及后续对本地事务的检查。
注意点:
1、半消息是对消费者不可见的一种消息。实际上,RocketMQ的做法是将消息转到了一个系统Topic,RMQ_SYS_TRANS_HALF_TOPIC。
2、事务消息中,本地事务回查次数通过参数transactionCheckMax设定,默认15次。本地事务回查的间隔通过参数transactionCheckInterval设定,默认60秒。超过回查次数后,消息将会被丢弃。
3、其实,了解了事务消息的机制后,在具体执行时,可以对事务流程进行适当的调整