动手学深度学习 Task02:文本预处理;语言模型;循环神经网络基础

【一】文本预处理
此次将讨论文本数据的常见预处理步骤,旨在将文本信息从人类语言转换为机器可读格式以便于后续处理。文本是一类序列数据,一篇文章可以看作是字符或单词的序列,预处理通常包括四个基本步骤:

  • 读入文本
  • 分词
  • 建立字典,将每个词映射到一个唯一的索引(index)
  • 将文本从词的序列转换为索引的序列,方便输入模型

读入文本
我们用一部英文小说,即H. G. Well的Time Machine,作为示例,展示文本预处理的具体过程。

import collections
import re

def read_time_machine():
    with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f:
        lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
    return lines
lines = read_time_machine()
print('# sentences %d' % len(lines))

分词
我们对每个句子进行分词,也就是将一个句子划分成若干个词(token),转换为一个词的序列。

def tokenize(sentences, token='word'):
    """Split sentences into word or char tokens"""
    if token == 'word':
        return [sentence.split(' ') for sentence in sentences]
    elif token == 'char':
        return [list(sentence) for sentence in sentences]
    else:
        print('ERROR: unkown token type '+token)

tokens = tokenize(lines)
tokens[0:2]

建立字典
为了方便模型处理,我们需要将字符串转换为数字。因此我们需要先构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号。

class Vocab(object):
    def __init__(self, tokens, min_freq=0, use_special_tokens=False):
        counter = count_corpus(tokens)  # : 
        self.token_freqs = list(counter.items())
        self.idx_to_token = []
        if use_special_tokens:
            # padding, begin of sentence, end of sentence, unknown
            self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
            self.idx_to_token += ['', '', '', '']
        else:
            self.unk = 0
            self.idx_to_token += ['']
        self.idx_to_token += [token for token, freq in self.token_freqs
                        if freq >= min_freq and token not in self.idx_to_token]
        self.token_to_idx = dict()
        for idx, token in enumerate(self.idx_to_token):
            self.token_to_idx[token] = idx

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

def count_corpus(sentences):
    tokens = [tk for st in sentences for tk in st]
    return collections.Counter(tokens)  # 返回一个字典,记录每个词的出现次数

将词转为索引
使用字典,我们可以将原文本中的句子从单词序列转换为索引序列

for i in range(8, 10):
    print('words:', tokens[i])
    print('indices:', vocab[tokens[i]])

用现有工具进行分词
我们前面介绍的分词方式非常简单,它至少有以下几个缺点:

  • 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
  • 类似“shouldn’t", "doesn’t"这样的词会被错误地处理
  • 类似"Mr.", "Dr."这样的词会被错误地处理

【二】语言模型
语言模型可以对一段文本的概率进行估计,对信息检索,机器翻译,语音识别等任务有着重要的作用。语言模型本质上是在回答一个问题:出现的语句是否合理。在历史的发展中,语言模型经历了专家语法规则模型(至80年代),统计语言模型(至00年),神经网络语言模型(到目前)。
n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。 n 元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面 n 个词相关,即 n 阶马尔可夫链(Markov chain of order n ),如果 n=1 ,那么有 P ( w 3 ∣ w 1 , w 2 ) = P ( w 3 ∣ w 2 ) P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2) P(w3w1,w2)=P(w3w2)。基于 n−1 阶马尔可夫链,我们可以将语言模型改写为

P ( w 1 , w 2 , … , w T ) = ∏ t = 1 T P ( w t ∣ w t − ( n − 1 ) , … , w t − 1 ) . P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) . P(w1,w2,,wT)=t=1TP(wtwt(n1),,wt1).

以上也叫 n 元语法( n -grams),它是基于 n−1 阶马尔可夫链的概率语言模型。例如,当 n=2 时,含有4个词的文本序列的概率就可以改写为:

P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3)=P(w1)P(w2w1)P(w3w2)P(w4w3)
当 n 分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列 w1,w2,w3,w4 在一元语法、二元语法和三元语法中的概率分别为

P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ) P ( w 3 ) P ( w 4 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w2)P(w4w3),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w2,w3).

当 n 较小时, n 元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当 n 较大时, n 元语法需要计算并存储大量的词频和多词相邻频率。

  • n 元语法可能有的缺陷:
    参数空间过大
    数据稀疏

    【三】循环神经网络基础
    今天讨论循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量 H H H,用 H t H_{t} Ht表示 H H H在时间步t的值。 H t H_{t} Ht的计算基于 X t X_{t} Xt H t − 1 H_{t-1} Ht1,可以认为 H t H_{t} Ht记录了到当前字符为止的序列信息,利用 H t H_{t} Ht对序列的下一个字符进行预测。
    动手学深度学习 Task02:文本预处理;语言模型;循环神经网络基础_第1张图片
    今天先讨论初步,下次任务对循环神经网络进行深入讨论。

你可能感兴趣的:(笔记,深度学习,机器学习,pytorch,神经网络)