本文导读:
当前,大数据、人工智能、云计算等技术应用正在推动保险科技发展,加速保险行业数字化进程。在这一背景下,招商信诺不断探索如何将多元数据融合扩充,以赋能代理人掌握更加详实的用户线索,并将智能分析贯穿业务全链路,实现对用户、产品、场景策略的全面洞察与闭环迭代。本文将详细介绍招商信诺在大数据基础建设方面的探索之旅,从最初为线报表、Ad-hoc 分析提供服务的 OLAP 引擎,逐步发展至基于 Apache Doris 构建的统一实时数据仓库,通过一套架构实现各业务领域的多元数据实时分析与融合统一管理,最终实现保险一线业务降本增收的目标。
作者:招商信诺大数据平台研发团队
招商信诺人寿是由招商银行与信诺集团中外合资的寿险公司,为企业和个人提供涵盖保险保障、健康管理、财富规划等产品及服务。目前,招商信诺已累积服务客户超千万、完成理赔客户超百万,并凭借一站式便捷的健康管理服务、可灵活配置“定制化”的保险方案获得广大用户的持续选择与信赖。
面对全球数据量爆炸性增长的趋势,数据的时效性与准确性对企业精细化运营越来越重要。我们希望通过数据能够快速感知客户行为、定位客户问题、高效匹配用户所需的产品与服务,以达到精细化业务营销、拓宽可保边界等目标。
随着业务不断拓展、分析场景逐渐多元化,业务分析师的要求也变得更为复杂,不仅要求数仓能够快速开发数据报表,还需要实现流批一体、湖仓一体、多元化数据类型的统一分析与管理。在大数据基础建设中,这些融合统一的特性变得至关重要。在这样的背景下,持续升级与改进数仓架构,从最初仅支持 BI 报表、数据大屏的一代架构到采用多个系统和组件提供数据服务的二代架构,再到如今新一代统一实时数据仓库 ,通过 Apache Doris 一套组件实现了架构的简化、技术栈的统一、数据的统一管理与分析,不仅提升了数据处理效率,并且满足了更多样化的数据分析需求。
本文将详细介绍招商信诺在数仓架构迭代与升级过程中如何基于 Apache Doris 统一存储、计算和查询出口、如何满足写入时效性的要求、如何在高并发点查与多表关联等场景下实现极速查询性能,为销售线索高效写入与查询、客户留存信息高频更新、服务场景数据一致打通等方面提供助力,进一步将客户线索转化为私域商机,赋予企业在经营、服务、营销等多方面的能力。
最初的业务需求是希望通过数仓来承载面向 C 端用户的保单自助查询、面向业务分析人员的多维分析报表以及面向管理者的实时数据大屏(Dashboard)三类业务场景。数仓需要满足业务数据的统一存储和高效的查询能力,以支持业务高效分析决策,同时还需要支持数据回写,以实现闭环式业务运营。
业务初期对数据服务的要求较为单一,主要是以提升报表数据的时效性为主,因此在数仓搭建的过程中,我们采用典型的 Lambda 架构,通过实时与离线两条链路分别进行数据采集、计算与存储,其中数仓主要采用宽表模型设计以支持对指标数据、明细数据的查询分析。
由架构图可以看到,FlinkCDC 负责实时数据采集,我们自研的 Hisen 工具(包括 Sqoop、DataX 以及 Python)负责离线数据采集。原始数据采集后,实时数据利用 Flink 进行计算、离线数据交由 Hive 进行批处理,最终导入至不同的 OLAP 组件(包括 Presto、Clickhouse、HBase 以及 MySQL)中,由 OLAP 向上层业务提供数据服务,其中各组件在架构中分别扮演不同的角色:
MySQL
按照业务需求,在数据完成计算后主要用于存储指标数据。目前,数仓表的数据量已经突破千万级, 而 MySQL 存储具有局限性,容易出现执行时间过长、系统返回错误等问题。
Clickhouse
Clickhouse 在单表数据读取的性能上表现出色,在大表 Join 性能较弱。随着业务场景的增加,实时数据量不断叠加与更新下,Clickhouse 面对新的业务需求存在一定局限:
HBase
主要用于主键查询,从 MySQL 与 Hive 中读取用户基础状态数据,包括客户积分、承保时间、累积承保保额。由于 HBase 不支持二级索引,对于非主键的数据读取较为局限,无法满足关联查询场景,同时 HBase 也不支持 SQL 语句查询。
Presto
由于上述组件在数据查询方面的场景限制,我们还引入了 Presto 作为离线数据的查询引擎,用于与 Hive 中的数据进行交互式分析,为上游端提供报表服务。
在数仓 1.0 版本上线后,已在超过 10 余家分公司中上线使用,开发了大量的数据大屏以及 BI 报表。随着业务范围的不断拓展,营销、运营以及客户服务等场景对数据写入与查询性能提出了更高的要求,然而混合使用四个组件提供数据服务的 1.0 版本架构在实际业务中存在一些挑战。为了避免由于架构组件过多所产生的运维成本升高、研发人员学习成本升高等问题,也为了确保在离线与实时链路中多源数据的一致性,我们决定展开架构更新迭代之旅。
为满足业务需求,我们需要为架构“减负”,尽可能地缩短数据处理过程。而 1.0 架构由于组件过多,链路冗余等问题势必降低了数据存储与分析的性能与时效性。因此,我们希望寻找一个 OLAP 系统既能覆盖大部分的业务场景,也能够降低复杂技术栈带来的开发、运维和使用成本,还能最大化的提升架构性能。具体要求如下:
基于此,我们开始系统选型,将市面上热门组件与现有架构进行多方面对比,评估是否满足业务方对组件的需求,最终在众多 OLAP 中锁定了 Apache Doris,具体原因如下:
从对比图中我们也可以看出,不论是实时还是离线场景,Apache Doris 的综合能力最均衡也是最优秀的一个,能够支持自助查询、实时与离线 OLAP 分析能力、高并发点查与表关联等查询场景,并且写入性能、高可用、易用性等方面表现优异,是一款能够满足多个业务场景的组件。
数仓架构的两代版本主要在存储、计算、查询分析方面有很大不同。1.0 版本依赖于多个组件共同构建 OLAP 分析引擎,在业务拓展阶段逐步出现架构存储冗余、数据延迟、维护成本过高等问题。架构 2.0 版本基于 Apache Doris 升级改造,替换了 Presto、MySQL、HBase、Clickhouse 四个组件并将数据迁移至 Apache Doris 中,以提供统一的对外查询服务。
新架构不仅实现了技术栈的统一,还降低了开发、存储与运维等各方面的成本支出,实现了业务与数据的进一步统一。基于 Apache Doris 一套系统能够同时支撑在线与离线任务处理,实现数据存储统一;能够满足了不同场景的数据分析服务,支持高吞吐的交互式分析与高并发的点查询,实现业务分析统一。
通过 Doris 极速分析性能,在面向 C 端用户的高并发点查询场景中,QPS 能够达到数千至数万,对于数亿或者数十亿数据的查询达到毫秒级响应; 利用 Doris 丰富的数据导入方式和高效的写入能力,实现秒级写入时延,并利用 Unique Key 写时合并来进一步加速在并行读写阶段的查询性能。此外,我们还利用了 Doris 冷热分层将海量的历史冷数据存储于廉价的存储介质中,降低了历史数据的存储成本并提升了对热数据的查询效率。
新架构较于原有架构,核心组件的数量减少了一半,平台架构得以大幅简化,运维成本大大降低。此外,Apache Doris 使数据无需再通过不同组件完成存储与查询服务,统一了实时与离线业务负载、降低了存储成本;数据服务 API 对外提供服务时也无需再合并实时与离线数据,使数据服务 API 接入时的开发成本缩减至 50 %;
因为 Doris 的统一存储、计算和服务的数仓架构,平台整体灾备方案易于实施,不再担心多个组件造成数据丢失、重复带来的问题。更重要的是,Doris 自带的跨集群复制 CCR 功能,能够提供集群间数据库表秒级至分钟级的同步,当系统崩溃导致业务中断或者丢失时,我们可以从备份中快速恢复。
Doris 跨集群复制 CCR 功能两大机制满足了我们在系统服务可用性方面的抢需求,保证了数据服务高可用,具体如下:
目前,基于 Apache Doris 统一技术栈的实时数仓已经在 2022 年 Q3 上线并投入生产环境使用,用于支撑海量数据的 OLAP 高效分析能力,并在平台上支撑了更多业务相关的场景。在业务经营方面,销售线索的规模也在不断扩大,目前已达到亿级。随着 Apache Doris 的功能的进一步引入,由数仓支持的一线业务营收也在持续增长中。
Apache Doris 的引入在实时数仓架构简化与性能提升方面起到了至关重要的作用。目前,我们已经基于 Apache Doris 替换了 Presto、Clickhouse、MySQL、HBase 多个组件以实现 OLAP 技术栈统一、各类成本降低,并提升导入与查询性能。
同时我们也计划进一步基于 Doris 在批处理层(Batch Layer)的尝试应用,将离线数据批处理统一在 Doris 中进行,解决 Lambda 架构在实时和离线链路中成本叠加、无法兼容的问题,真正实现架构在计算、存储、分析的统一。同时,我们也将继续发挥 Doris 统一的优势,利用 Multi-Catalog 让数据在湖与仓之间自由流动,实现数据湖和多种异构存储之上无缝且极速的分析服务,成为一套更完整、更开放统一的大数据技术生态系统。
非常感谢 SelectDB 团队一直以来对我们的技术支持。至此,招商信诺数据仓库不再局限于简单的报表场景,通过一套架构支撑了多种不同场景的数据分析、满足了实时与离线数据的统一写入与查询,为产品营销、客户运营、C 端以及 B 端等业务提供数据价值,使保险人员更高效地获取数据、更准确地预知客户需求,为企业获得先机。
未来,我们也会持续参与到 Apache Doris 社区建设中,贡献保险行业在实时数仓的建设经验与实践应用,希望 Apache Doris 不断发展壮大,为基础软件建设添砖加瓦!