- Debezium系列之:使用Debezium采集oceanbase数据库
快乐骑行^_^
debeziumDebezium系列采集oceanbase数据库
Debezium系列之:使用Debezium采集oceanbase数据库一、oceanbase数据库二、安装OceanBase三、安装oblogproxy四、基于Docker的简单采集案例五、生产实际应用案例Debezium是一个开源的分布式平台,用于监控数据库变化和捕捉数据变动事件,并以事件流的形式导出到各种消费者。Debezium基于ApacheKafka实现,并支持多种数据库系统。一、oce
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁
「已注销」
数据库分布式redisjava多线程
谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁一、性能压测我们希望通过压测发现其他测试更难发现的错误:内存泄漏、并发与同步。1、性能指标吞吐量、响应时间QPSTPS、错误率RT:ResponseTime响应时间HPS:hitspersecond每秒点击次数TPS:Transactionpersecond系统每秒处理交易数QPS:querypersecond每秒处理查询次数2、JMeter下载地
- DeepSeek 3FS 与 JuiceFS:架构与特性比较
运维人工智能
近期,DeepSeek开源了其文件系统Fire-FlyerFileSystem(3FS),使得文件系统这一有着70多年历时的“古老”的技术,又获得了各方的关注。在AI业务中,企业需要处理大量的文本、图像、视频等非结构化数据,还需要应对数据量的爆炸式增长,分布式文件系统因此成为AI训练的关键存储技术。本文旨在通过深入分析3FS的实现机制,并与JuiceFS进行对比,以帮助用户理解两种文件系统的区别及
- HarmonyNext实战:基于ArkTS的分布式任务调度系统开发
harmonyos
HarmonyNext实战:基于ArkTS的分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的需求。无论是大规模数据处理,还是多设备协同计算,都需要高效、可靠的任务调度机制。本文将深入探讨如何基于ArkTS设计和实现一个分布式任务调度系统,适配HarmonyNext,并满足实际工程中的高性能和高可靠性需求。本文面向有一定开发经验的读者,假设您已经熟悉Ha
- 分布式电商项目 谷粒商城 学习笔记<4>
怎么又有bug单
SpringBoot分布式java开发语言阿里压力测试
文章目录十五、压力测试1.一些基本概念2.JVM内存机制3.压测记录4.Nginx动静分离5.优化三级分类查询十六、redisson分布式锁与缓存1.概念2.redis3.缓存失效缓存穿透缓存雪崩缓存击穿互斥锁:4.缓存击穿如何复制微服务:5.分布式缓存概念原则基本流程6.Redisson环境搭建可重入锁锁的续期读写锁信号量(Semaphore)闭锁7.缓存和数据库一致性十五、压力测试这里是使用j
- 鸿蒙Next开发与未来发展的变革:全场景操作系统的全新纪元
北辰alk
鸿蒙harmonyos华为
文章目录引言:从兼容到自主的跨越式进化一、鸿蒙Next技术架构解析1.1系统架构全景图1.1.1微内核架构优势1.2与OpenHarmony的关系二、开发范式革命2.1应用开发模式对比2.1.1元服务(MetaService)定义2.2开发工具链升级(DevEcoStudio4.0)2.2.1核心功能增强2.2.2工程结构变革三、关键技术突破3.1方舟编译器深度优化3.2分布式能力增强3.2.1设
- GraphQL 联邦架构:构建可扩展的分布式 API 生态系统
全栈探索者chen
知识分享graphql架构分布式开发语言缓存后端性能优化
GraphQL联邦架构:构建可扩展的分布式API生态系统前言随着微服务架构在企业级应用中的广泛应用,各个服务需要独立演进与部署,API层的设计逐渐成为开发者面临的重要挑战。GraphQL作为一种灵活的数据查询语言,已经在许多项目中取代了传统RESTfulAPI。然而,当业务不断增长、服务拆分越来越细粒度时,单一GraphQL服务往往难以满足扩展性和独立部署的需求。为了解决这一问题,GraphQL联
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- 实现RPC框架的流量控制与限流策略
AI天才研究院
计算编程实践架构师必知必会系列计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍实现RPC框架的流量控制与限流策略作者:禅与计算机程序设计艺术1.背景介绍1.1RPC简介RPC(RemoteProcedureCall),即远程过程调用,是一种常见的分布式系统中的通信方式。它允许程序员像调用本地函数一样去调用网络上位于其他机器上的函数。RPC通过将参数序列化为消息,然后发送到服务器上执行相应的函数,最后将结果反序列化返回给客户端。1.2流量控制与限流策略在分布式系统
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 【后端开发面试题】每日 3 题(十五)
Pandaconda 的测开之路
#后端开发面试专栏面试后端后端开发分布式数据库幂等性python
✍个人博客:Pandaconda-CSDN博客专栏地址:https://blog.csdn.net/newin2020/category_12903849.html专栏简介:在这个专栏中,我将会分享后端开发面试中常见的面试题给大家,每天的题目都是独立且随机的,之前的面试题不会影响接下来的学习~❤️如果有收获的话,欢迎点赞收藏,您的支持就是我创作的最大动力题目1:什么是分布式锁?它的使用场景是什么?
- HarmonyOS Next深度解析:从技术架构到实践应用
披光人
harmonyOSharmonyos架构华为
HarmonyOSNext作为华为最新一代的分布式操作系统,不仅在技术架构上进行了全面的革新,还在实际应用场景中展现了强大的潜力。对于有一定开发基础的开发者来说,深入理解HarmonyOSNext的技术细节和实际应用方法,是掌握鸿蒙开发的关键。本文将从技术架构、最新技术分析以及开发实践三个方面,详细解析HarmonyOSNext的核心技术和应用场景,帮助开发者快速上手并高效开发。一、Harmony
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- Java集成MQTT和Kafka实现稳定、可靠、高性能的物联网消息处理系统
qzw1210
javakafka物联网
Java集成MQTT和Kafka实现高可用方案1.概述在物联网(IoT)和分布式系统中,消息传递的可靠性和高可用性至关重要。本文将详细介绍如何使用Java集成MQTT和Kafka来构建一个高可用的消息处理系统。MQTT(消息队列遥测传输)是一种轻量级的发布/订阅协议,适用于资源受限的设备和低带宽、高延迟网络。而Kafka是一个分布式流处理平台,提供高吞吐量、可扩展性和持久性。将两者结合,可以创建一
- Java 分布式高并发重试方案及实现
可乐加.糖
java分布式开发语言springbootredis
文章目录Java分布式高并发重试方案及实现一、重试机制的背景和意义二、基于SpringBoot的重试方案实现1.使用SpringRetry实现重试机制添加依赖开启重试功能定义重试逻辑使用重试服务2.使用Fast-Retry实现高性能重试引入依赖编程式重试注解式重试三、重试机制的注意事项四、总结Java分布式高并发重试方案及实现在分布式系统中,高并发场景下接口调用的稳定性至关重要。为了应对接口调用失
- 《论分布式系统架构设计及其应用》架构师论文
文琪小站
系统架构师系统架构设计师软考论文
【摘要】2022年3月,我参与了某金融科技公司“智能风控云平台”项目的研发工作,担任系统架构师职务,负责分布式系统架构设计与核心技术选型。该平台旨在为银行、保险等金融机构提供实时风险评估、反欺诈及数据服务,需支撑每秒十万级并发请求并满足毫秒级响应要求。项目采用微服务架构风格,融合事件驱动、服务网格及分布式数据存储技术,解决了高可用性、弹性扩展及数据一致性等核心问题。本文通过实际案例论证分布式架构设
- token升级(考虑在分布式环境中布置token,结合session保证请求调用过程中token不会过期。)
推荐爱你Jonah
分布式redisjava
思路:首先,用户的需求是确保使用同一个Token的外部调用都在一个Session中处理。之前的回答提到了Token与Session绑定、安全措施、Session管理、分布式处理等。现在需要用Java来展示这些步骤。我需要考虑Java中常用的框架,比如SpringBoot,因为它广泛用于API开发。同时,使用Redis作为Session存储,这在Java中通常通过SpringDataRedis或Le
- 技术解析麦萌短剧《阴阳无极》:从「性别偏见下的对抗训练」到「分布式江湖的架构重构」
短剧萌
分布式架构重构
《阴阳无极》以陈千叶的武道觉醒为线索,展现了传统系统的路径依赖困境与对抗性策略的范式突破。本文将从算法博弈视角拆解这场武侠革命的底层逻辑,探讨如何在性别偏见的数据集中完成模型的自我进化。1.初始模型偏差:继承权剥夺与梯度冻结陈千叶(Agent_C)的成长可视为有偏数据集上的训练:特征歧视:太极门继承规则(Legacy_Rule)作为传统分类器,强行将性别(Gender_Feature)设为负权重参
- 麦萌短剧技术解构《我跑江湖那些年》:从“仇恨驱动型算法”到“多方安全计算的自我救赎”
短剧萌
算法安全
《我跑江湖那些年》以慕青青的复仇与蜕变为主线,展现了分布式系统中的信任崩塌与对抗性博弈的模型优化。本文将从机器学习视角拆解这场“江湖算法”的技术隐喻,探讨如何在数据污染的困境中实现参数净化。1.初始训练集:暴力采样与特征空间坍缩慕青青(Agent_M)的成长环境可视为一个高偏差训练集:数据污染事件:村主任(Node_V)通过恶意共识算法(如嫉妒驱动的PoW机制),煽动村民(Sub_Nodes)对果
- 麦萌:《我们曾经有过家》深度解析 | 被至亲背刺后,首富如何用“系统性重构”逆风翻盘?
短剧萌
重构
剧情全解析:从“隐忍架构”到“复仇算法”的史诗级崩盘与逆袭1.系统初始化:首富的“降权模式”安城首富高志强为守护妻子李梦露的“平凡人生”,主动剥离财富与地位,化身能源厂普通职员。这一行为如同将分布式系统的核心节点降级为边缘服务——他默默为妻子铺路,助其从基层员工晋升至副厂长,甚至计划将能源厂最高控制权(厂长职位)移交给她。2.致命漏洞:情感协议的全面违约在权力交接的关键时刻(相当于系统升级前夜),
- Flink 初体验:从 Hello World 到实时数据流处理
小诸葛IT课堂
flink大数据
在大数据处理领域,ApacheFlink以其卓越的流批一体化处理能力脱颖而出,成为众多企业构建实时数据应用的首选框架。本文将带领你迈出Flink学习的第一步,从基础概念入手,逐步引导你编写并运行第一个Flink程序——经典的WordCount,让你亲身感受Flink在实时数据流处理方面的强大魅力。一、Flink基础概念速览1.1什么是FlinkFlink是一个分布式流批一体化开源平台,旨在对无界和
- Git 使用指南
tonngw
git
Git是一种分布式版本控制系统,可以追踪文件的变化并协助多人协作开发项目。下面是Git的基本概念和使用方式:仓库(Repository):Git用来存储项目的地方,可以理解为项目的文件夹,包含项目的所有文件和历史记录。提交(Commit):提交是指保存项目当前状态的操作,每次提交都会记录文件的变化,包括新增、修改和删除。分支(Branch):分支是在仓库中独立存在的工作线,可以用来开发新功能、修复
- RPC远程调用框架Dubbo
Czi橙
rpcdubbo网络协议javanacosspringcloud微服务
一、分布式服务调用_什么是RPCRPC(RemoteProcedureCall)远程过程调用,它是一种通过网络从远程计算机程序上请求服务。大白话理解就是:RPC让你用别人家的东西就像自己家的一样。RPC两个作用:屏蔽远程调用跟本地调用的区别,让我们感觉就是调用项目内的方法隐藏底层网络通信的复杂性,让我们更加专注业务逻辑。常用的RPC框架RPC是一种技术思想而非一种规范或协议。常见RPC技术和框架:
- 服务远程调用(RPC)架构及原理
小小工匠
【SimpleRPC】rpc架构网络协议
文章目录引言一、RPC架构与核心组件二、RPC调用流程解析三、关键技术实现1.网络通信协议2.序列化与反序列化四、RPC框架核心特性引言SimpleRPC在分布式系统中,服务远程调用(RPC)是系统解耦与可扩展性的核心技术。它通过屏蔽底层通信细节,让开发者像调用本地函数一样使用远程服务。接下来我们将深入解析RPC的核心架构、通信流程及关键特性。一、RPC架构与核心组件RPC架构分为五个核心模块,各
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- Go语言 vs Java语言:核心差异与适用场景解析
By北阳
golangjava开发语言
在当今的软件开发领域,Go(Golang)和Java都是备受关注的后端开发语言。尽管二者都能构建高性能服务,但它们在设计哲学、语法特性和应用场景上存在显著差异。本文将从多个维度对比这两种语言,帮助开发者更好地理解它们的优缺点,并为技术选型提供参考。一、设计哲学与语言定位1.Go语言定位:专为高并发、分布式系统设计,强调简洁性和高效性。特点:语法简单,学习曲线平缓。静态编译为单一二进制文件,部署便捷
- 关于PLC、电缆线材及气缸选型的详细教程
自动化专业爱好者
网络
以下是关于PLC、电缆线材及气缸选型的详细教程,整合了多个专业来源的核心要点:一、PLC选型要点生产厂家选择日系PLC(如三菱FX系列、欧姆龙CP1系列)适合独立设备或简单控制系统,性价比高。欧美系PLC(如西门子S7-1200/1500系列)适用于大型分布式系统或需复杂通信的场景(如工业以太网)。特殊行业(如冶金、烟草)需选择有行业成熟案例的PLC品牌。I/O点数估算统计所有输入/输出信号(如传
- 性能测试自动化:JMeter脚本设计与分布式压测实战指南
测试渣
自动化jmeter分布式测试工具
引言在数字化竞争日益激烈的今天,软件系统的性能表现直接影响用户体验和业务连续性。无论是电商大促的“秒杀”场景,还是金融系统的高频交易,性能测试自动化已成为保障系统稳定性的核心手段。ApacheJMeter作为开源性能测试工具中的标杆,凭借其灵活性和扩展性,成为企业构建自动化测试体系的首选工具。本文将从脚本设计与分布式压测两大核心维度,系统阐述JMeter在性能测试自动化中的实践方法,为企业提供可落
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比