该函数描述了 Transformer 编码器层的前向传播过程,包括自注意力(self-attention)和前馈神经网络(feedforward network)的处理步骤,以及层归一化的应用。
定义了如何将输入数据通过编码器层进行前向传播
这个 forward
函数执行以下操作:
将输入 src
(输入序列)保存在变量 x
中,这是为了在后面的计算中使用。
根据参数 norm_first
的值,选择执行不同的顺序。如果 norm_first
为 True
,则首先应用层归一化 (self.norm1
),然后将结果传递给自注意力块 (self._sa_block
),最后再应用第二次层归一化 (self.norm2
) 和前馈块 (self._ff_block
)。
如果 norm_first
为 False
,则首先执行自注意力块 (self._sa_block
),然后应用第一次层归一化 (self.norm1
),接着执行前馈块 (self._ff_block
),最后再应用第二次层归一化 (self.norm2
)。
class TransformerEncoderLayer(Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False``.
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectivaly. Otherwise it's done after. Default: ``False`` (after).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
Alternatively, when ``batch_first`` is ``True``:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)
"""
__constants__ = ['batch_first', 'norm_first']
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
layer_norm_eps=1e-5, batch_first=False, norm_first=False,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = _get_activation_fn(activation)
else:
self.activation = activation
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerEncoderLayer, self).__setstate__(state)
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = src
if self.norm_first:
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
x = x + self._ff_block(self.norm2(x))
else:
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask))
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor]) -> Tensor:
x = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)