代码随想录算法训练营第三十九天|62.不同路径、63.不同路径Ⅱ

day39 2023/03/11

代码随想录算法训练营第三十九天|62.不同路径、63.不同路径Ⅱ_第1张图片

 

一、不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

分析如下:

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3.dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

4.确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5.举例推导dp数组

如图所示:

代码随想录算法训练营第三十九天|62.不同路径、63.不同路径Ⅱ_第2张图片

 

代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
    vector> dp(m,vector(n,0));//初始化二维数组
    for(int i=0;i

注意数组下标从0开始 ,否则会出现报错现象

二、不同路径Ⅱ

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

分析如下:

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

递推公式和上题一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

3.dp数组初始化

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

4.确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

5.举例推导dp数组

代码如下:

class Solution {
public:
    int uniquePathsWithObstacles(vector>& obstacleGrid) {
      int m=obstacleGrid.size();
      int n=obstacleGrid[0].size();
      //确定m,n即二维数组的行和列的大小,注意这里的语法
      if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;
      //如果起点或者终点有障碍物,则返回0
      vector> dp(m,vector(n,0));

      for(int i=0;i

这里注意定义初始化数组的时候需要在for循环内部进行条件的判断,如果在外部判断可能会导致报错

你可能感兴趣的:(算法)