- docker compose部署zookeeper集群
现实、太残忍
dockerdockerzookeeper容器
networks:net:name:netservices:zookeeper1:image:zookeeper:3.7.0restart:alwayscontainer_name:zookeeper1hostname:zookeeper1privileged:trueports:-'2181:2181'environment:ZOO_MY_ID:1ZOO_SERVERS:server.1=zoo
- Elasticsearch+Fluentd+Kibana 日志收集系统的搭建
Resean0223
devopselasticsearchdocker
本次安装部署是在docker环境中进行,没有安装docker的,先安装docker环境,具体也可以参考我另一篇文章:[https://blog.csdn.net/qq_31366767/article/details/120880458]一、ElasticSearch安装配置1、首先先创建好安装目录,然後在改目录下创建docker-compse.yml文件version:'2'networks:e
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:
[email protected])发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- Unity-Mirror学习笔记-Tank
薯仔焖鹅
游戏unity
Unity-Mirror-学习笔记(Tank)通过Mirror内置的例子来学习其用法,此为笔记。游戏对象以及其使用到的Network组件NetworkManager1NetworkManagerHUD2TelepathyTransportNetworkManagerSpawn(GameObject)3NetworkStartPositionUI-Canvas(GameObject)4TankGam
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 华为 MindStudio 安装指南
丰年稻香
人工智能python人工智能
1.MindStudio介绍华为MindStudio是一款集成开发环境(IDE),用于AscendAI处理器的开发调试。它支持模型训练、推理、算子开发、性能优化等AI任务,并依赖CANN(ComputeArchitectureforNeuralNetworks)作为计算架构基础。本指南介绍如何在KunLunG2280服务器上安装MindStudio,包括环境准备、依赖安装、CANN安装及MindS
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 【时序预测】-深度学习系列
TIM老师
时序预测深度学习时序预测
Wavenet(2016)重点:CNN系列+因果卷积+膨胀卷积核心:确保了输出的时间点只依赖于输入序列中时间戳早于或等于该输出时间点的数据,核心模块膨胀卷积能够扩大卷积层的感受野,从而更充分学习序列的全局信息。DeepAR(2017Amazon)DeepAR:ProbabilisticForecastingwithAutoregressiveRecurrentNetworks重点:RNN系列+多元
- DeepSeek图神经网络(Graph Neural Networks, GNNs)基础与实践
Evaporator Core
Python开发经验深度学习DeepSeek快速入门神经网络人工智能深度学习
图神经网络(GraphNeuralNetworks,GNNs)是一种专门用于处理图结构数据的深度学习模型。与传统的神经网络不同,GNNs能够捕捉节点之间的关系和图的全局结构,广泛应用于社交网络分析、推荐系统、化学分子建模等领域。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练图神经网络。本文将详细介绍如何使用DeepSeek进行图神经网络的基础与实践,并通过代码示例帮助你掌握这些
- MongoDB 安装
yqcoder
mongodb数据库
一、Windows系统1.下载安装包访问MongoDB官方下载页面,选择适合Windows系统的版本,通常是64位的.msi文件。2.运行安装程序双击下载的.msi文件,在安装向导中,点击“Next”,阅读并接受许可协议,选择安装类型。若选择“Custom”可自定义安装路径。3.配置安装选项一般默认“RunserviceasNetworkServiceuser”。可以取消勾选左下角的图形化工具“I
- 深度神经网络(Deep Neural Networks, DNNs)
CaiGuoHui1
dnn神经网络深度学习人工智能
引言(1)简介:什么是深度神经网络?深度神经网络(DeepNeuralNetworks,DNNs)是机器学习的一种复杂形式,属于广义的人工神经网络(ArtificialNeuralNetworks,ANNs)的范畴。它们设计用来模仿人类大脑的处理方式,通过多层(即“深度”)的神经元结构处理数据,从而解决各种复杂的数据驱动问题。这些网络通过多个隐藏层连接输入和输出层,每层都包含多个神经元,这些神经元
- 了解深度神经网络模型(Deep Neural Networks, DNN)
huaqianzkh
未来技术dnn人工智能神经网络
深度神经网络模型(DeepNeuralNetworks,DNN)深度神经网络模型是一种包含多个隐藏层的神经网络,能够通过多层次的非线性变换从数据中提取复杂特征,广泛应用于图像识别、自然语言处理等领域。基本结构输入层:接收原始数据。隐藏层:包含多个层,每层有多个神经元,通过非线性激活函数处理数据。输出层:生成最终预测或分类结果。主要特点多层次结构:通过多个隐藏层逐步提取高层次特征。非线性变换:使用激
- Android车机DIY开发之软件篇(十二)编译Automotive OS错误(3)
勿忘初心91
车机DIYandroidarm开发嵌入式硬件经验分享
Android车机DIY开发之软件篇(十二)编译AutomotiveOS错误(3)问题[85%113538/132897]//hardware/interfaces/neuralnetworks/1.1/utils:neuralnetworks_utils_hal_1_1clang++src/Device.cpp[85%113539/132897]//hardware/interfaces/neu
- TC-LLaVA论文笔记
0yumiwawa0
计算机视觉论文阅读
RoPE介绍理解LLM位置编码:RoPE|LinsightMotivation在基于视频的multimodallargelanguagemodel中,更好地利用视频提供的时序信息。MethodTemporal-AwareDualRoPE之前的RoPE公式:A(qTm,kFnVz)=Re[qTmkFnVzei(P(Tm)−P(FnVz))θ]A_{(q_{T_m},k_{F_nV_z})}=Re[q
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
虚幻私塾
pythonpython开发语言
优质资源分享学习路线指引(点击解锁)知识定位人群定位Python实战微信订餐小程序进阶级本课程是pythonflask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。Python量化交易实战入门级手把手带你打造一个易扩展、更安全、效率更高的量化交易系统论文信息论文标题:MGAE:MaskedAutoencodersforSelf-SupervisedLearningonG
- 【论文精读】《Towards Deep Learning Models Resistant to Adversarial Attacks》
智算菩萨
深度学习人工智能
摘要本文探讨了深度学习模型在面对对抗性攻击时的脆弱性,并提出了一种基于鲁棒优化的方法来增强神经网络的对抗鲁棒性。通过鞍点优化框架,作者提供了对抗攻击和防御机制的统一视角,并在MNIST和CIFAR-10数据集上验证了其方法的有效性。本文的核心贡献包括:1)定义攻击模型和扰动集以优化模型参数;2)强调网络容量对对抗鲁棒性的影响;3)提出对抗训练作为提升模型鲁棒性的关键方法。本文为深度学习模型的对抗鲁
- CNN-day5-经典神经网络LeNets5
谢眠
深度学习深度学习计算机视觉人工智能
经典神经网络-LeNets51998年YannLeCun等提出的第一个用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络参考:论文笔记:Gradient-BasedLearningAppliedtoDocumentRecognition-CSDN博客1网络模型结构整体结构解读:输入图像:32×32×1三个卷积层:C1:输入图片32×32,6个5×5卷积核,输出特征图大小28×28(3
- [论文笔记] llama3.2 蒸馏
心心喵
论文笔记论文阅读
参考链接:LLaMA3.2技术报告:GitHub-meta-llama/llama-stack:ModelcomponentsoftheLlamaStackAPIs[2407.21783]TheLlama3HerdofModelshttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/HuggingFac
- 翻译模型
daisy190127
翻译模型
翻译模型发展史1980年,提出基于规则的翻译1993年,IBM提出基于词的统计翻译模型2003年,Koehn提出基于短语的统计翻译模型2014年,谷歌和蒙特利尔大学提出端到端神经网络机器翻译,SequencetoSequenceLearningwithNeuralNetworks和LearningPhraseRepresentationsusingRNNEncoder–DecoderforStat
- DeepSeek生成对抗网络(GAN)的训练与应用
Evaporator Core
Python开发经验人工智能DeepSeek快速入门生成对抗网络人工智能神经网络
生成对抗网络(GenerativeAdversarialNetworks,GANs)是深度学习领域的一项重要技术,能够生成逼真的图像、音频和文本数据。GANs通过两个神经网络(生成器和判别器)的对抗训练,实现了高质量数据的生成。DeepSeek提供了强大的工具和API,帮助我们高效地训练和应用GANs。本文将详细介绍如何使用DeepSeek进行GAN的训练与应用,并通过代码示例帮助你掌握这些技巧。
- 深度学习之DCGAN算法深度解析
贾斯汀玛尔斯
python机器学习人工智能深度学习
DCGAN(DeepConvolutionalGenerativeAdversarialNetworks)算法解析1.DCGAN算法由来DCGAN(深度卷积生成对抗网络)是IanGoodfellow在2014年提出的GAN(生成对抗网络)的改进版本,由Radford等人在2015年的论文《UnsupervisedRepresentationLearningwithDeepConvolutional
- 图神经网络实战(8)——图注意力网络(Graph Attention Networks, GAT)
盼小辉丶
图神经网络从入门到项目实战图神经网络pytorch图注意力网络GNN
图神经网络实战(8)——图注意力网络0.前言1.图注意力层原理1.1线性变换1.2激活函数1.3Softmax归一化1.4多头注意力1.5改进图注意力层2.使用NumPy中实现图注意力层3.使用PyTorchGeometric实现GAT3.1在Cora数据集上训练GAT模型3.2在CiteSeer数据集上训练GAT模型3.3误差分析小结系列链接0.前言图注意力网络(GraphAttentionNe
- 提示 error fetching videos:CLEARTEXT conmmunication to 192.168.0.104 not permitted by network security
王家视频教程图书馆
go+flutter全栈开发android
你遇到的错误是:errorfetchingvideos:CLEARTEXTcommunicationto192.168.0.104notpermittedbynetworksecuritypolicy这个错误是由于Android9(Pie)及之后的版本默认不允许使用HTTP(明文传输)协议,尤其是在应用中进行网络请求时。它要求应用必须使用HTTPS(加密传输)来保证数据的安全性。解决方法:你有几种
- 神经网络Neural Networks概述
种花家的码农
神经网络学习笔记神经网络人工智能机器学习
人工智能(AI)是一类非常广泛的问题,它旨在通过计算机实现类似人类的智能。机器学习(ML)是解决人工智能问题的一个重要方法。深度学习(DL)则是机器学习的一个分支,它在很多领域突破了传统机器学习的瓶颈,将人工智能推向了新的高潮。深度学习是基于人工神经网络(ANN)技术的发展而不断突破和提升,推动了人工智能的发展。相对的另一领域是生物神经网络(BiologicalNeuralNetwork,BNN)
- [论文笔记] Deepseek技术报告
心心喵
论文笔记论文阅读人工智能
1.总体概述背景与目标报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。介绍了两代模型:DeepSeek-R1-Zero(纯RL,无SFT冷启动数据)和DeepSeek-R1(在RL前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。核心思路直接在基础模型上应用大规模强化学习,利用
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置