993 Cousins in Binary Tree 二叉树的堂兄弟节点
Description:
In a binary tree, the root node is at depth 0, and children of each depth k node are at depth k+1.
Two nodes of a binary tree are cousins if they have the same depth, but have different parents.
We are given the root of a binary tree with unique values, and the values x and y of two different nodes in the tree.
Return true if and only if the nodes corresponding to the values x and y are cousins.
Example:
Example 1:
Input: root = [1,2,3,4], x = 4, y = 3
Output: false
Example 2:
Input: root = [1,2,3,null,4,null,5], x = 5, y = 4
Output: true
Example 3:
Input: root = [1,2,3,null,4], x = 2, y = 3
Output: false
Note:
The number of nodes in the tree will be between 2 and 100.
Each node has a unique integer value from 1 to 100.
题目描述:
在二叉树中,根节点位于深度 0 处,每个深度为 k 的节点的子节点位于深度 k+1 处。
如果二叉树的两个节点深度相同,但父节点不同,则它们是一对堂兄弟节点。
我们给出了具有唯一值的二叉树的根节点 root,以及树中两个不同节点的值 x 和 y。
只有与值 x 和 y 对应的节点是堂兄弟节点时,才返回 true。否则,返回 false。
示例 :
示例 1:
输入:root = [1,2,3,4], x = 4, y = 3
输出:false
示例 2:
输入:root = [1,2,3,null,4,null,5], x = 5, y = 4
输出:true
示例 3:
输入:root = [1,2,3,null,4], x = 2, y = 3
输出:false
提示:
二叉树的节点数介于 2 到 100 之间。
每个节点的值都是唯一的、范围为 1 到 100 的整数。
思路:
- 层序遍历, 如果x, y在同一层, 且不是相邻的两个结点(较小的结点的下标不能为偶数), 则为堂兄弟结点, 如果为空, 可以在该层加入 0或者 null
- 遍历同时记录下结点的高度和父结点, 比较 x和 y的高度和父结点即可
时间复杂度O(n), 空间复杂度O(n)
代码:
C++:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution
{
public:
bool isCousins(TreeNode* root, int x, int y)
{
dfs(root, x, y, 0);
return (height_x == height_y) && (parent_x != parent_y);
}
private:
int height_x = -1, height_y = -1, parent_x = -1, parent_y = -1;
void dfs(const TreeNode* root, const int x, const int y, const int h)
{
if (!root) return;
if (root -> left and root -> left -> val == x or root -> right and root -> right -> val == x)
{
parent_x = root -> val;
height_x = h;
}
if (root -> left and root -> left -> val == y or root -> right and root -> right -> val == y)
{
parent_y = root -> val;
height_y = h;
}
dfs(root -> left, x, y, h + 1);
dfs(root -> right, x, y, h + 1);
}
};
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private Map depth;
private Map parent;
public boolean isCousins(TreeNode root, int x, int y) {
depth = new HashMap();
parent = new HashMap();
dfs(root, null);
return (depth.get(x) == depth.get(y) && parent.get(x) != parent.get(y));
}
public void dfs(TreeNode node, TreeNode par) {
if (node != null) {
depth.put(node.val, par != null ? 1 + depth.get(par.val) : 0);
parent.put(node.val, par);
dfs(node.left, node);
dfs(node.right, node);
}
}
}
Python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isCousins(self, root: TreeNode, x: int, y: int) -> bool:
queue = [root]
while queue:
size, level = len(queue), []
for _ in range(size):
cur = queue.pop(0)
if cur:
level.append(cur.val)
queue.append(cur.left)
queue.append(cur.right)
else:
level.append(0)
if x in level and y in level:
index_x, index_y = min(level.index(x), level.index(y)), max(level.index(x), level.index(y))
if index_x + 1 == index_y and not (index_x & 1):
return False
return True
if x in level or y in level:
return False
return False