代码随想录算法训练营第十四天|二叉树理论基础|二叉树的递归遍历|二叉树的迭代遍历以及统一迭代

今天是代码随想录算法训练营第十四天

今天学习了

  1. 二叉树理论基础
  2. 二叉树的递归遍历
  3. 二叉树的迭代遍历以及统一遍历

对于迭代遍历部分还需要再挑战挑战的。

二叉树的递归遍历代码如下:

# 前序遍历-递归-LC144_二叉树的前序遍历
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right

class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        if not root:
            return []

        left = self.preorderTraversal(root.left)
        right = self.preorderTraversal(root.right)

        return  [root.val] + left +  right



# 中序遍历-递归-LC94_二叉树的中序遍历
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        if root is None:
            return []

        left = self.inorderTraversal(root.left)
        right = self.inorderTraversal(root.right)

        return left + [root.val] + right




# 后序遍历-递归-LC145_二叉树的后序遍历
class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        if not root:
            return []

        left = self.postorderTraversal(root.left)
        right = self.postorderTraversal(root.right)

        return left + right + [root.val]



二叉树的迭代遍历代码如下:

这里前序和后序的代码逻辑相似,但是中序的代码逻辑是不同的。

# 前序遍历-迭代-LC144_二叉树的前序遍历
class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        # 根结点为空则返回空列表
        if not root:
            return []
        stack = [root]
        result = []
        while stack:
            node = stack.pop()
            # 中结点先处理
            result.append(node.val)
            # 右孩子先入栈
            if node.right:
                stack.append(node.right)
            # 左孩子后入栈
            if node.left:
                stack.append(node.left)
        return result


# 中序遍历-迭代-LC94_二叉树的中序遍历
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        if not root:
            return []
        stack = []  # 不能提前将root结点加入stack中
        result = []
        cur = root
        while cur or stack:
            # 先迭代访问最底层的左子树结点
            if cur:     
                stack.append(cur)
                cur = cur.left		
            # 到达最左结点后处理栈顶结点    
            else:		
                cur = stack.pop()
                result.append(cur.val)
                # 取栈顶元素右结点
                cur = cur.right	
        return result




# 后序遍历-迭代-LC145_二叉树的后序遍历
class Solution:
   def postorderTraversal(self, root: TreeNode) -> List[int]:
       if not root:
           return []
       stack = [root]
       result = []
       while stack:
           node = stack.pop()
           # 中结点先处理
           result.append(node.val)
           # 左孩子先入栈
           if node.left:
               stack.append(node.left)
           # 右孩子后入栈
           if node.right:
               stack.append(node.right)
       # 将最终的数组翻转
       return result[::-1]



统一迭代(这种方式的话,三种迭代遍历的逻辑是相似的)

# 迭代法前序遍历:
class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st= []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                if node.right: #右
                    st.append(node.right)
                if node.left: #左
                    st.append(node.left)
                st.append(node) #中
                st.append(None)
            else:
                node = st.pop()
                result.append(node.val)
        return result



# 迭代法中序遍历:
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st = []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                if node.right: #添加右节点(空节点不入栈)
                    st.append(node.right)
                
                st.append(node) #添加中节点
                st.append(None) #中节点访问过,但是还没有处理,加入空节点做为标记。
                
                if node.left: #添加左节点(空节点不入栈)
                    st.append(node.left)
            else: #只有遇到空节点的时候,才将下一个节点放进结果集
                node = st.pop() #重新取出栈中元素
                result.append(node.val) #加入到结果集
        return result



# 迭代法后序遍历:
class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        result = []
        st = []
        if root:
            st.append(root)
        while st:
            node = st.pop()
            if node != None:
                st.append(node) #中
                st.append(None)
                
                if node.right: #右
                    st.append(node.right)
                if node.left: #左
                    st.append(node.left)
            else:
                node = st.pop()
                result.append(node.val)
        return result

你可能感兴趣的:(算法,python,leetcode)