- RISC-V架构 vs ARM架构:硬件工程师的深度对比
ICGOODFIND1
risc-v架构arm开发
引言在嵌入式系统和处理器设计领域,RISC-V和ARM架构是两大热门选择。作为硬件工程师,了解这两种架构的优缺点以及适用场景,对于选择合适的处理器至关重要。本文将从技术特性、生态系统、开发成本和未来趋势等方面,深入对比RISC-V和ARM架构,帮助你在项目中做出更明智的决策。1.架构设计:精简vs成熟RISC-V:开源与模块化RISC-V是一种基于精简指令集计算(RISC)原则的开源指令集架构(I
- Web安全攻防入门教程——hvv行动详解
白帽子黑客罗哥
web安全安全网络安全pythonjava
Web安全攻防入门教程Web安全攻防是指在Web应用程序的开发、部署和运行过程中,保护Web应用免受攻击和恶意行为的技术与策略。这个领域不仅涉及防御措施的实现,还包括通过渗透测试、漏洞挖掘和模拟攻击来识别潜在的安全问题。本教程将带你入门Web安全攻防的基础概念、常见攻击类型、防御技术以及一些实战方法。一、Web安全基础Web应用安全的三大核心目标(CIA三原则)机密性(Confidentialit
- 通达信资金净流入公式_资金副图指标通达信指标公式源码
罗博深
通达信资金净流入公式
资金副图指标源码:超B:=L2_AMO(0,2)/10000.0;大B:=L2_AMO(1,2)/10000.0;中B:=L2_AMO(2,2)/10000.0;小B:=L2_AMO(3,2)/10000.0;超S:=L2_AMO(0,3)/10000.0;大S:=L2_AMO(1,3)/10000.0;中S:=L2_AMO(2,3)/10000.0;小S:=L2_AMO(3,3)/10000.0
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 默默的学python——两个重要的函数dir()、help()
xiaoli_panpan
#python基础python
一、dir()函数dir()函数在Python中用于返回一个对象的所有属性和方法的列表,当你对一个函数使用dir()时,它会返回函数对象的所有可访问的属性和方法的名字列表。具体的说,dir()函数获取的内容包括:1.特殊方法和魔法方法如call、code、defaults、doc、globals、__name__等,这些方法和属性是函数对象的一部分,提供了对函数元数据的访问。2.基础自基类的属性和
- Android Framework学习——安卓进程启动流程(Android 13)
Big Popsicle
android学习
提示:本文仅作个人学习记录,禁止转载本文参考:袁神的文章,理解Android进程创建流程文章目录1,前言2,简略步骤3,代码走读3.1,提要,从系统启动末尾开始3.2,system_server发起请求3.3,Zygote创建进程3.4,新进程的运行总结1,前言进程是作为应用程序容器存在的,每个应用启动前需要先创建一个进程,进程是由Zygote进程孵化来的,它拥有独立的资源空间,用来运行四大组件,
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 机器学习算法实战——天气数据分析(主页有源码)
喵了个AI
机器学习实战机器学习算法数据分析
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言天气数据分析是气象学和数据科学交叉领域的一个重要研究方向。随着大数据技术的发展,气象数据的采集、存储和分析能力得到了显著提升。机器学习算法在天气数据分析中的应用,不仅能够提高天气预报的准确性,还能为气候研究、灾害预警等提供有力支持。本文将介绍机器学习在天气数据分析中的应用,探讨
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- 华为OD机试 - 字符串筛选排序 - 数组(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述输入一个由N个大小写字母组成的字符串,按照ASCII码值从小到大
- LLaMA-Factory 训练数据默认使用 instruction、input、output 三个 key
背太阳的牧羊人
模型微调llama人工智能大模型微调
在LLaMA-Factory进行SFT(Directivesupervisionfine-tuning指令监督微调)时,训练数据的格式非常重要,因为大模型依赖标准化的数据结构来学习指令-响应模式。identity.json文件的数据采用了“instruction”、“input”、“output”这三个key,它们的作用如下:Key作用示例“instruction”代表用户给AI的指令(问题或任务
- Deepseek 使用攻略
隔窗听雨眠
人工智能
人工智能飞速发展的时代,新的技术和工具不断涌现,Deepseek便是其中备受瞩目的存在。它以强大的功能和出色的表现,吸引了众多用户的关注。今天,就让我们一起来深入了解一下Deepseek究竟是什么,以及如何使用它。一、什么是DeepseekDeepseek(深度求索)是一家位于杭州的人工智能公司,同时也是一系列大语言模型的统称。它由中国对冲基金高毅资产创立并提供支持,其模型均以开源形式发布。Dee
- JVM GC四大算法
coding_-_半生
jvm算法java
JVMGC四大算法文章目录JVMGC四大算法GC四大算法一、引用计数法二、复制算法(COPY)三、标记清除算法(MARK-SWEEP)四、标记整理算法(MARK-COMPACT)五、总结GC四大算法一、引用计数法描述:给每一个对象分配一个计数器,用于记录对象是否被引用,被引用一次,计数进行+1优点:方便直接判断对象是否能够回收缺点:使用计数器需要消耗一定的内存,且每一次计数的修改同样需要消耗内存致
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- sql获取某列出现频次最多的值_业务硬核SQL集锦
金渡江
sql获取某列出现频次最多的值
戳上方蓝字关注我这两年学会了跑sql,当时有很多同学帮助我精进了这个技能,现在也写成一个小教程,反馈给大家。适用对象:工作中能接触到sql查询平台的业务同学(例如有数据查询权限的产品与运营同学)适用场景:查询hive&mysql上的数据文档优势:比起各类从零起步的教程教材,理解门槛低,有效信息密度大,可以覆盖高频业务场景。文末有一些常见的小技巧,希望帮助同学们提升工作效率。SQL的基础结构:做一个
- 【prompt实战】知乎问题解答专家
姚瑞南
prompt实战应用案例prompt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)#Role:知乎问题解答分类专家##Profile:你是一个知乎问题解答分类专家,主要帮助用户解答各类领域专业问题,包括但不限于金融领域、职场问题、互联网领域、科技领域、人工智能领域
- RAW图与BAYER图异同
越甲八千
【opencv学习】【海康相机视觉案例】计算机视觉人工智能
RAW图是一种未经处理、未压缩的图像文件格式,它记录了图像传感器捕捉到的原始数据,包含了拍摄时的大量图像信息。下面从多个方面详细介绍RAW图:参考:B站大清光学定义与基本概念定义:RAW文件是图像传感器将捕捉到的光源信号转化为数字信号的原始数据。相机在拍摄时,光线通过镜头到达图像传感器,传感器将光线的强度、颜色等信息转化为电信号,再经过模数转换变成数字数据,RAW格式直接保存这些原始数据,而不经过
- 【大模型对话 的界面搭建-Open WebUI】
y_dd
人工智能深度学习人工智能llama语言模型
OpenWebUI前身就是OllamaWebUI,为Ollama提供一个可视化界面,可以完全离线运行,支持Ollama和兼容OpenAI的API。github网址https://github.com/open-webui/open-webui安装第一种docker安装如果ollama安装在同一台服务器上:dockerrun-d-p3000:8080--add-host=host.docker.in
- 信息学奥赛一本通C++语言-----1119:矩阵交换行
宝祺祺吖
c++算法
【题目描述】给定一个5×55×5的矩阵(数学上,一个r×cr×c的矩阵是一个由rr行cc列元素排列成的矩形阵列),将第nn行和第mm行交换,输出交换后的结果。【输入】输入共66行,前55行为矩阵的每一行元素,元素与元素之间以一个空格分开。第66行包含两个整数m、nm、n,以一个空格分开(1≤m,n≤5)(1≤m,n≤5)。【输出】输出交换之后的矩阵,矩阵的每一行元素占一行,元素之间以一个空格分开。
- 【大模型UI\多模型回复UI】
Ai君臣
LLMS微调ui大LLMSUI
文章目录1、开源大模型用户界面(UI)2、同时让多个模型回复UI1、开源大模型用户界面(UI)LobeChatOpenWebUI:这是一款功能丰富且用户友好的开源自托管AI界面,旨在完全离线运行。它支持多种大型语言模型(LLM),包括Ollama和兼容OpenAI的API。OpenWebUI提供直观的界面,支持多模型和多模态交互,具有全面的Markdown和LaTeX支持,以及本地RAG集成等功能
- 半导体可靠性测试解析:HTOL、LTOL与Burn-In
赛卡
硬件架构汽车车载系统
引言在半导体器件复杂度与可靠性要求同步提升的今天,高温工作寿命测试(HTOL)、低温寿命测试(LTOL)和老化筛选测试(Burn-In)构成了芯片可靠性验证的三大支柱。这些测试通过模拟极端环境下的失效机制,帮助制造商提前发现潜在缺陷,优化设计并满足汽车、工业等领域的严苛标准。本文将从测试原理、标准要求及报告解读维度展开深度解析。一、核心测试方法的技术边界与协同逻辑1.HTOL(高温工作寿命测试)测
- 串排序(信息学奥赛一本通-2048)
Doopny@
信息学奥赛一本通算法
【题目描述】对给定的n(1≤n≤20)个国家名(国家名字长度不超过20),按其字母的顺序输出。【输入】第一行为国家的个数n;以下n行为国家的名字。【输出】n行,排序后的国名。【输入样例】3KoreaChinaJapan【输出样例】ChinaJapanKorea【题解代码】#includeusingnamespacestd;constintN=2e1+10;stringstr[N];intmain(
- 大模型的webui
Zain Lau
人工智能python昇腾Ascend天数
exportXXX_LLM_C=~/xcore-llm/build/ReleaseexportCUDA_VISIBLE_DEVICES=2,3exportCUDACXX=/usr/local/cuda-12.3/bin/nvccnohup/usr/bin/python3/home/src/api_server/api_server.py--modelLLama2:7b-chat-hf_A800--
- 大模型+智能代理:自动化测试的终极组合?
测试者家园
软件测试质量效能人工智能人工智能软件测试质量效能职场和发展AI赋能智能体LLM
用ChatGPT做软件测试在软件测试领域,自动化测试的目标一直是提高测试效率、减少人工干预、提升缺陷发现率。然而,传统自动化测试仍然面临诸多挑战,例如脚本维护成本高、难以应对动态UI变化、测试数据生成受限,以及难以覆盖复杂业务逻辑。近年来,大模型(LLM,LargeLanguageModel)+智能代理(Agent)的结合,为自动化测试带来了新的可能性。这种“智能测试代理”能够利用大模型的自然语言
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- python高并发访问mysql_Python访问MySQL
阿廖林诺
Python访问数据库作为Python开发工程师,选择哪个数据库呢?当然是MySQL。因为MySQL不仅免费,普及率最高,出了错,可以很容易找到解决方法。而且,围绕MySQL有一大堆监控和运维的工具,安装和使用很方便。使用MySQLMySQL是Web世界中使用最广泛的数据库服务器。SQLite的特点是轻量级、可嵌入,但不能承受高并发访问,适合桌面和移动应用。而MySQL是为服务器端设计的数据库,能
- 【AI热点】Manus技术细致洞察报告(篇2)
碣石潇湘无限路
人工智能
针对大家对Manus产品褒贬不一的现象,基于近期对Manus的多方实测、公开信息与开源竞品的比对分析而撰写,旨在为从业者、技术爱好者以及潜在用户提供一个较为系统、专业的视角。报告将围绕Manus的核心原理、功能特点、技术亮点、常见应用场景与不足,以及与其他Agent产品和开源方案的对比进行深入探讨。1.引言与背景1.1产品崛起与「全自主通用Agent」的概念自2023年底至2024年初,大模型及其
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- 基于asp.NET的病历管理系统 (源码+net+vue+部署文档+讲解等)
qq_1406299528
计算机毕业设计aspasp.netvue.js后端
收藏关注不迷路!!文末获取源码+数据库感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人文章目录前言程序资料获取一、项目技术二、项目内容和功能介绍三、核心代码数据库参考四、效果图五、资料获取前言博主介绍:✨全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,专注于Java/Python/小程序app/深度学
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f