ResNet模型构建(可以比较好的符合torchvision中的预训练权重)

首先需要导入需要的python包

import math # 导入数学运算库
import numpy as np # 导入numpy库,用于数组操作
import torch.nn as nn # 导入PyTorch的nn模块,用于构建神经网络
from torchsummary import summary # 从torchsummary库中导入summary函数,用于打印模型摘要
import torchvision.models as models # 导入torchvision的models模块,用于获取预训练模型

接下来是ResNet网络的bottleneck结构,ResNet中的Bottleneck结构是一种常见的结构,它出现在ResNet block中¹。Bottleneck结构由三层卷积组成,分别是1x1,3x3和1x1卷积,其中1x1层负责减少和增加(恢复)维度,使3x3层成为具有较小输入/输出维度的瓶颈。
Bottleneck结构的优点在于它可以灵活地设计网络并减小计算量。它使用1x1卷积来方便地改变维度。

class Bottleneck(nn.Module):
	# 定义类变量expansion,用于计算输出通道数
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

下面是Resnet的函数主体

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
    
        self.inplanes = 64 # 定义类变量inplanes,表示输入通道数
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion*4, num_classes)
        for m in self.modules(): # 遍历所有模块
            if isinstance(m, nn.Conv2d): # 如果模块是卷积层
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # 计算权重数量
                m.weight.data.normal_(0, math.sqrt(2. / n)) # 使用正态分布初始化权重
            elif isinstance(m, nn.BatchNorm2d): # 如果模块是批量归一化层
                m.weight.data.fill_(1) # 将权重初始化为1
                m.bias.data.zero_() # 将偏置初始化为0
	def _make_layer(self, block, planes, blocks, stride=1): # 定义_make_layer函数,接受block类型、输出通道数、block数量和步长作为参数
	    downsample = None # 定义downsample变量,用于存储下采样函数
	    if stride != 1 or self.inplanes != planes * block.expansion: # 如果步长不为1或输入通道数不等于输出通道数
	        downsample = nn.Sequential( # 定义下采样函数,使用1x1卷积核,步长为stride
	            nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),
	            nn.BatchNorm2d(planes * block.expansion), # 定义批量归一化层
	        )
	    layers = [] # 定义layers列表,用于存储卷积层组中的所有层
	    layers.append(block(self.inplanes, planes, stride, downsample)) # 向layers列表中添加第一个block
	    self.inplanes = planes * block.expansion # 更新输入通道数
	    for i in range(1, blocks): # 遍历剩余的block数量
	        layers.append(block(self.inplanes, planes)) # 向layers列表中添加block
	    return nn.Sequential(*layers) # 返回一个Sequential模块,包含所有层
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

模型构建函数

arch_settings = {
        'resnet50': (Bottleneck, (3, 4, 6, 3)),
        'resnet101': (Bottleneck, (3, 4, 23, 3)),
        'resnet152': (Bottleneck, (3, 8, 36, 3))
    }
def resnet(depth,pretrained = False):
    if depth not in arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
    Bottleneck,stage_blocks = arch_settings[depth]
    model = ResNet(Bottleneck, stage_blocks)
    load_key, no_load_key, temp_dict = [], [], {}
    if pretrained and depth=="resnet50":
        resnext50 = models.resnet50(pretrained=True) #获取预训练权重
        #后续是权重的导入
        pretrained_dict = resnext50.state_dict()
        model_dict = model.state_dict()
        for k, v in pretrained_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                load_key.append(k)
            else:
                no_load_key.append(k)
        model_dict.update(temp_dict)
        model.load_state_dict(model_dict)
    elif pretrained and depth == "resnet101":
        resnext101 = models.resnet101(pretrained=True)
        pretrained_dict = resnext101.state_dict()
        model_dict = model.state_dict()
        for k, v in pretrained_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                load_key.append(k)
            else:
                no_load_key.append(k)
        model_dict.update(temp_dict)
        model.load_state_dict(model_dict)
    elif pretrained and depth == "resnet152":
        resnext101 = models.resnet152(pretrained=True)
        pretrained_dict = resnext101.state_dict()
        model_dict = model.state_dict()
        load_key, no_load_key, temp_dict = [], [], {}
        for k, v in pretrained_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                load_key.append(k)
            else:
                no_load_key.append(k)
        model_dict.update(temp_dict)
        model.load_state_dict(model_dict)
    #此部分是查看权重导入情况
    print("load over")
    print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))
    print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))
    return model
if __name__ == "__main__":
    model = resnet("resnet101",pretrained=False)
    model = model.cuda()

你可能感兴趣的:(深度学习,pytorch,计算机视觉)