水深平均的二维浅水方程推导

浅水方程推导

将三维的基本方程沿水深积分平均,即可得到沿水深平均的平面二维流动基本方程。

定义水深为H=\zeta-Z_{0}\zetaZ_{0}为基准面下液面水位和河床高程:

水深平均的二维浅水方程推导_第1张图片

定义沿水深平均流速U_{i}为:

H=\zeta-Z_{0}U_{i}=\frac{1}{H} \int_{z_{0}}^{\zeta} \bar{u}_{i} d z

引用莱布尼兹公式

\frac{\partial}{\partial x_{i}} \int_{b}^{a} f d z=\int_{a}^{b} \frac{\partial f}{\partial x_{i}} d z+\left.f\right|_{b} \frac{\partial b}{\partial x_{i}}-\left.f\right|_{a} \frac{\partial a}{\partial x_{i}}

自由表面及底部运动学条件

\begin{array}{l} \left.\bar{u}_{z}\right|_{z=\zeta}=\frac{d \bar{\zeta}}{d t}=\frac{\partial \bar{\zeta}}{\partial t}+\left.\frac{\partial \bar{\zeta}}{\partial x} \bar{u}_{x}\right|_{z=\zeta}+\left.\frac{\partial \bar{\zeta}}{\partial y} \bar{u}_{y}\right|_{z=\zeta} \\ \left.\bar{u}_{z}\right|_{z=z_{0}}=\frac{d \overline{z_{0}}}{d t}=\frac{\partial \overline{z_{0}}}{\partial t}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \overline{u_{x}}\right|_{z=z_{0}}+\left.\frac{\partial \overline{z_{0}}}{\partial y} \overline{u_{y}}\right|_{z=z_{0}} \end{array}

x方向为例三维流动的运动方程沿水深平均为

\large \int_{z_{0}}^{\zeta}\left[\frac{\partial \overline{u_{x}}}{\partial t}+\frac{\partial}{\partial x}\left(\overline{u_{x}} \overline{u_{x}}\right)+\frac{\partial}{\partial y}\left(\bar{u}_{x} \overline{u_{y}}\right)+\frac{\partial}{\partial z}\left(\overline{u_{x}} \overline{u_{z}}\right)+\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}-v_{t}\left(\frac{\partial^{2} \overline{u_{x}}}{\partial x^{2}}+\frac{\partial^{2} \overline{u_{y}}}{\partial y^{2}}+\frac{\partial^{2} \overline{u_{z}}}{\partial z^{2}}\right)\right] d z=0

非恒定项积分

\large \begin{array}{l} \int_{z_{0}}^{\zeta} \frac{\partial u_{x}}{\partial t} d z=\frac{\partial}{\partial t} \int_{z_{0}}^{\zeta} \overline{u_{x}} d z-\left.\frac{\partial \zeta}{\partial t} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial z_{0}}{\partial t} u_{x}\right|_{z=z_{0}} \\ =\frac{\partial H U_{x}}{\partial t}-\left.\frac{\partial \bar{\zeta}}{\partial t} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial t} \overline{u_{x}}\right|_{z=z_{0}} \end{array}

对流项积分

首先将时均流速分解为,式中为垂线平均流速,为时均流速与垂线平均流速的差值。

\large \begin{array}{l} \int_{z_{0}}^{\zeta} \overline{u_{x}} \bar{u}_{x} d z=\int_{z_{0}}^{\zeta}\left(U_{x}+\Delta \overline{u_{x}}\right)\left(U_{x}+\Delta \overline{u_{x}}\right) d z \\ =\int_{z_{0}}^{\zeta}\left(U_{x} U_{x}+\Delta \overline{u_{x}} \Delta \overline{u_{x}}+2 U_{x} \Delta \overline{u_{x}}\right) d z \\ =H U_{x} U_{x}+\int_{z_{0}}^{\zeta} \Delta \overline{u_{x}} \Delta \overline{u_{x}} d z=\beta_{x x} H U_{x} U_{x} \end{array}

式中,,是由于流速沿垂线分布不均匀而引入的修正系数,类似于水力学中的动量修正系数,其数值一般在1.02—1.05,可以近似取1.0,因此

\large \int_{z_{0}}^{\zeta} \frac{\partial \overline{u_{x}} \overline{u_{x}}}{\partial x} d z=\frac{\partial H U_{x} U_{x}}{\partial x}-\left.\frac{\partial \bar{\zeta}}{\partial x} \overline{u_{x}} \overline{u_{x}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \overline{u_{x}} \overline{u_{x}}\right|_{z=z_{0}}

类似,可以得到

\large \int_{z_{0}}^{\zeta} \frac{\partial \overline{u_{x}} \overline{u_{y}}}{\partial y} d z=\frac{\partial H U_{x} U_{y}}{\partial y}-\left.\frac{\partial \bar{\zeta}}{\partial y} \overline{u_{x}} \overline{u_{y}}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial y} \overline{u_{x}} \overline{u_{y}}\right|_{z=z_{0}}

上几式相加,并利用底部及自由表面运动学条件可得

\large \begin{array}{l} \int_{z_{0}}^{\zeta}\left[\frac{\partial \bar{u}_{x}}{\partial t}+\frac{\partial}{\partial x}\left(\bar{u}_{x} \bar{u}_{x}\right)+\frac{\partial}{\partial y}\left(\bar{u}_{x} \bar{u}_{y}\right)+\frac{\partial}{\partial z}\left(\bar{u}_{x} \bar{u}_{z}\right)\right] d z \\ =\frac{\partial H U_{x}}{\partial t}+\frac{\partial H U_{x} U_{x}}{\partial x}+\frac{\partial H U_{x} U_{y}}{\partial y} \end{array}

压力项积分

\large \int_{z_{0}}^{\zeta} \frac{\partial \bar{p}}{\partial x} d z=\frac{\partial}{\partial x} \int_{z_{0}}^{\zeta} \bar{p} d z-\left.\frac{\partial \bar{\zeta}}{\partial x} \bar{p}\right|_{z=\zeta}+\left.\frac{\partial \overline{z_{0}}}{\partial x} \bar{p}\right|_{z=z_{0}}(莱布尼茨公式)

将代入上式后化简得:

\large \int_{z_{0}}^{\zeta} \frac{\partial \bar{p}}{\partial x} d z=\rho g H \frac{\partial H}{\partial x}+\rho g H \frac{\partial \overline{z_{0}}}{\partial x}=\rho g H \frac{\partial \bar{\zeta}}{\partial x}

扩散项积分

\large \int_{z_{0}}^{\zeta}\left[v_{t}\left(\frac{\partial^{2} \bar{u}_{x}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}_{y}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}_{z}}{\partial z^{2}}\right)\right] d z =v_{t}\left(\frac{\partial^{2} H U_{x}}{\partial x^{2}}+\frac{\partial^{2} H U_{x}}{\partial y^{2}}\right)-g \frac{n^{2} U_{x} \sqrt{U_{x}^{2}+U_{y}^{2}}}{H^{1 / 3}}+C_{w} \frac{\rho_{a}}{\rho} \omega^{2} \cos \beta

上式右边后两项分别为由底部创面阻力和表面风阻力引起的阻力项。式中,为无因次风应力系数;为空气密度;为风速;为风向与x方向的夹角。

最后运动方程写成张量形式为

\large \frac{\partial H U_{i}}{\partial t}+\frac{\partial H U_{i} U_{j}}{\partial x_{j}}+g H \frac{\partial \varsigma}{\partial x_{i}}+g \frac{n^{2} U_{i} \sqrt{U_{j}^{2}}}{H^{1 / 3}}=v_{t} \frac{\partial^{2} H U_{i}}{\partial x_{j}^{2}}​​​​​​​

 

 

你可能感兴趣的:(CFD,流体力学)