WebGL 选中一个表面

目录

选中一个表面 

示例程序(PickFace.js)

代码详解

示例效果


选中一个表面 

​​​​​​​WebGL 选中物体_山楂树の的博客-CSDN博客可以使用同样的方法来选中物体的某一个表面。这一节在PickObject程序的基础上编写了PickFace程序,后者同样包含一个立方体,但用户可以选中立方体的某一个表面,被选中的表面会变成白色。下图显示了PickFace的运行效果。

WebGL 选中一个表面_第1张图片

如果你理解了PickObject的程序原理,那么PickFace就很简单了。PickObject用户在点击鼠标时,将立方体重绘为红色,然后读取鼠标点击位置的像素颜色,根据其是红色或是黑色来判断点击时鼠标是否在立方体上,即是否选中了立方体。而PickFace则更进一步,在用户点击鼠标时重绘立方体,并将“每个像素属于哪个面”的信息写入到颜色缓冲区的α分量中。下面来看一下示例程序。 

示例程序(PickFace.js)

PickFace.js的代码如下所示。为了简洁,略去了与前例相同的部分,如顶点着色器等。 

// PickFace.js (c) 2012 matsuda and kanda
// Vertex shader program
var VSHADER_SOURCE =
  'attribute vec4 a_Position;\n' +
  'attribute vec4 a_Color;\n' +
  'attribute float a_Face;\n' +   // Surface number (Cannot use int for attribute variable)
  'uniform mat4 u_MvpMatrix;\n' +
  'uniform int u_PickedFace;\n' + // Surface number of selected face
  'varying vec4 v_Color;\n' +
  'void main() {\n' +
  '  gl_Position = u_MvpMatrix * a_Position;\n' +
  '  int face = int(a_Face);\n' + // Convert to int
  '  vec3 color = (face == u_PickedFace) ? vec3(1.0) : a_Color.rgb;\n' +
  '  if(u_PickedFace == 0) {\n' + // In case of 0, insert the face number into alpha
  '    v_Color = vec4(color, a_Face/255.0);\n' +
  '  } else {\n' +
  '    v_Color = vec4(color, a_Color.a);\n' +
  '  }\n' +
  '}\n';

// Fragment shader program
var FSHADER_SOURCE =
  '#ifdef GL_ES\n' +
  'precision mediump float;\n' +
  '#endif\n' +
  'varying vec4 v_Color;\n' +
  'void main() {\n' +
  '  gl_FragColor = v_Color;\n' +
  '}\n';

var ANGLE_STEP = 20.0; // Rotation angle (degrees/second)

function main() {
  // Retrieve  element
  var canvas = document.getElementById('webgl');

  // Get the rendering context for WebGL
  var gl = getWebGLContext(canvas);
  if (!gl) {
    console.log('Failed to get the rendering context for WebGL');
    return;
  }

  // Initialize shaders
  if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {
    console.log('Failed to intialize shaders.');
    return;
  }

  // Set the vertex information
  var n = initVertexBuffers(gl);
  if (n < 0) {
    console.log('Failed to set the vertex information');
    return;
  }

  // Set the clear color and enable the depth test
  gl.clearColor(0.0, 0.0, 0.0, 1.0);
  gl.enable(gl.DEPTH_TEST);

  // Get the storage locations of uniform variables
  var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');
  var u_PickedFace = gl.getUniformLocation(gl.program, 'u_PickedFace');
  if (!u_MvpMatrix || !u_PickedFace) { 
    console.log('Failed to get the storage location of uniform variable');
    return;
  }

  // Calculate the view projection matrix
  var viewProjMatrix = new Matrix4();
  viewProjMatrix.setPerspective(30.0, canvas.width / canvas.height, 1.0, 100.0);
  viewProjMatrix.lookAt(0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

  // Initialize selected surface
  gl.uniform1i(u_PickedFace, -1);

  var currentAngle = 0.0; // Current rotation angle
  // Register the event handler
  canvas.onmousedown = function(ev) {   // Mouse is pressed
    var x = ev.clientX, y = ev.clientY;
    var rect = ev.target.getBoundingClientRect();
    if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) {
      // If Clicked position is inside the , update the selected surface
      var x_in_canvas = x - rect.left, y_in_canvas = rect.bottom - y;
      var face = checkFace(gl, n, x_in_canvas, y_in_canvas, currentAngle, u_PickedFace, viewProjMatrix, u_MvpMatrix);
      gl.uniform1i(u_PickedFace, face); // Pass the surface number to u_PickedFace
      draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix);
    }
  }

  var tick = function() {   // Start drawing
    currentAngle = animate(currentAngle);
    draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix);
    requestAnimationFrame(tick, canvas);
  };
  tick();
}

function initVertexBuffers(gl) {
  // Create a cube
  //    v6----- v5
  //   /|      /|
  //  v1------v0|
  //  | |     | |
  //  | |v7---|-|v4
  //  |/      |/
  //  v2------v3

  var vertices = new Float32Array([   // Vertex coordinates
     1.0, 1.0, 1.0,  -1.0, 1.0, 1.0,  -1.0,-1.0, 1.0,   1.0,-1.0, 1.0,    // v0-v1-v2-v3 front
     1.0, 1.0, 1.0,   1.0,-1.0, 1.0,   1.0,-1.0,-1.0,   1.0, 1.0,-1.0,    // v0-v3-v4-v5 right
     1.0, 1.0, 1.0,   1.0, 1.0,-1.0,  -1.0, 1.0,-1.0,  -1.0, 1.0, 1.0,    // v0-v5-v6-v1 up
    -1.0, 1.0, 1.0,  -1.0, 1.0,-1.0,  -1.0,-1.0,-1.0,  -1.0,-1.0, 1.0,    // v1-v6-v7-v2 left
    -1.0,-1.0,-1.0,   1.0,-1.0,-1.0,   1.0,-1.0, 1.0,  -1.0,-1.0, 1.0,    // v7-v4-v3-v2 down
     1.0,-1.0,-1.0,  -1.0,-1.0,-1.0,  -1.0, 1.0,-1.0,   1.0, 1.0,-1.0     // v4-v7-v6-v5 back
  ]);

  var colors = new Float32Array([   // Colors
    0.32, 0.18, 0.56,  0.32, 0.18, 0.56,  0.32, 0.18, 0.56,  0.32, 0.18, 0.56, // v0-v1-v2-v3 front
    0.5, 0.41, 0.69,   0.5, 0.41, 0.69,   0.5, 0.41, 0.69,   0.5, 0.41, 0.69,  // v0-v3-v4-v5 right
    0.78, 0.69, 0.84,  0.78, 0.69, 0.84,  0.78, 0.69, 0.84,  0.78, 0.69, 0.84, // v0-v5-v6-v1 up
    0.0, 0.32, 0.61,   0.0, 0.32, 0.61,   0.0, 0.32, 0.61,   0.0, 0.32, 0.61,  // v1-v6-v7-v2 left
    0.27, 0.58, 0.82,  0.27, 0.58, 0.82,  0.27, 0.58, 0.82,  0.27, 0.58, 0.82, // v7-v4-v3-v2 down
    0.73, 0.82, 0.93,  0.73, 0.82, 0.93,  0.73, 0.82, 0.93,  0.73, 0.82, 0.93, // v4-v7-v6-v5 back
   ]);

  var faces = new Uint8Array([   // Faces
    1, 1, 1, 1,     // v0-v1-v2-v3 front
    2, 2, 2, 2,     // v0-v3-v4-v5 right
    3, 3, 3, 3,     // v0-v5-v6-v1 up
    4, 4, 4, 4,     // v1-v6-v7-v2 left
    5, 5, 5, 5,     // v7-v4-v3-v2 down
    6, 6, 6, 6,     // v4-v7-v6-v5 back
  ]);

  var indices = new Uint8Array([   // Indices of the vertices
     0, 1, 2,   0, 2, 3,    // front
     4, 5, 6,   4, 6, 7,    // right
     8, 9,10,   8,10,11,    // up
    12,13,14,  12,14,15,    // left
    16,17,18,  16,18,19,    // down
    20,21,22,  20,22,23     // back
  ]);

  // Create a buffer object
  var indexBuffer = gl.createBuffer();
  if (!indexBuffer) {
    return -1;
  }

  // Write vertex information to buffer object
  if (!initArrayBuffer(gl, vertices, gl.FLOAT, 3, 'a_Position')) return -1; // Coordinates Information
  if (!initArrayBuffer(gl, colors, gl.FLOAT, 3, 'a_Color')) return -1;      // Color Information
  if (!initArrayBuffer(gl, faces, gl.UNSIGNED_BYTE, 1, 'a_Face')) return -1;// Surface Information

  // Unbind the buffer object
  gl.bindBuffer(gl.ARRAY_BUFFER, null);

  // Write the indices to the buffer object
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

  return indices.length;
}

function checkFace(gl, n, x, y, currentAngle, u_PickedFace, viewProjMatrix, u_MvpMatrix) {
  var pixels = new Uint8Array(4); // Array for storing the pixel value
  gl.uniform1i(u_PickedFace, 0);  // Draw by writing surface number into alpha value
  draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix);
  // Read the pixel value of the clicked position. pixels[3] is the surface number
  gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels);

  return pixels[3];
}

var g_MvpMatrix = new Matrix4(); // Model view projection matrix
function draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix) {
  // Caliculate The model view projection matrix and pass it to u_MvpMatrix
  g_MvpMatrix.set(viewProjMatrix);
  g_MvpMatrix.rotate(currentAngle, 1.0, 0.0, 0.0); // Rotate appropriately
  g_MvpMatrix.rotate(currentAngle, 0.0, 1.0, 0.0);
  g_MvpMatrix.rotate(currentAngle, 0.0, 0.0, 1.0);
  gl.uniformMatrix4fv(u_MvpMatrix, false, g_MvpMatrix.elements);

  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);     // Clear buffers
  gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);   // Draw
}

var last = Date.now();  // Last time that this function was called
function animate(angle) {
  var now = Date.now(); // Calculate the elapsed time
  var elapsed = now - last;
  last = now;
  // Update the current rotation angle (adjusted by the elapsed time)
  var newAngle = angle + (ANGLE_STEP * elapsed) / 1000.0;
  return newAngle % 360;
}

function initArrayBuffer (gl, data, type, num, attribute) {
  // Create a buffer object
  var buffer = gl.createBuffer();
  if (!buffer) {
    console.log('Failed to create the buffer object');
    return false;
  }
  // Write date into the buffer object
  gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
  gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
  // Assign the buffer object to the attribute variable
  var a_attribute = gl.getAttribLocation(gl.program, attribute);
  if (a_attribute < 0) {
    console.log('Failed to get the storage location of ' + attribute);
    return false;
  }
  gl.vertexAttribPointer(a_attribute, num, type, false, 0, 0);
  // Enable the assignment to a_attribute variable
  gl.enableVertexAttribArray(a_attribute);

  return true;
}

代码详解

首先,顶点着色器中添加了attribute变量a_Face,它表示立方体各表面的编号,即当前顶点属于哪个表面(第6行)。鼠标被点击时,这个值就会被“编码”成颜色值的α分量。initVertexBuffers()函数(第99行)建立了表面编号数组faces,数组中的每个元素对应一个顶点(第127行)。比如,顶点v0-v1-v2-v3定义了1号表面,而顶点v0-v3-v4-v5定义了2号表面,等等。数组faces前4个元素都是1,表示前4个顶点都属于1号表面,以此类推(第128行)。

当某个表面被选中时,就通过u_PickedFace变量来通知顶点着色器这个表面被选中了(第8行)。这样顶点着色器就可以将这个表面绘制成白色,用户就获得了反馈,知道这个表面确实被选中了。

在正常情况下(即不在鼠标被点击的那一刻),顶点着色器会比较当前被选中的表面编号u_PickedFace和当前顶点的表面编号a_Face,如果它们相等,即当前顶点属于被选中的表面,就将color赋为白色,如果不相等,就将其赋为顶点原来的颜色a_Color。此处必须将float类型的a_Face转化为int类型,再与u_PickedFace进行比较,因为attribute变量只能是float类型的。在鼠标点击的那一刻,u_PickedFace被设为0,我们将a_Face的值写入到颜色的α分量中。

main()函数为u_PickedFace指定初始值-1(第75行)。按照faces变量的定义(第127行),立方体各表面中没有哪一个编号是-1,所以一开始没有任何表面被选中,每一个面的颜色都是初始颜色。

鼠标被点击时,u_PickedFace变量变为了0,顶点着色器就在颜色缓冲区中将每个面绘制成非1的α值,并且α的值取决于表面编号。最关键的逻辑发生在鼠标点击事件的响应函数中:在获取了鼠标点击位置后,调用checkFace()函数并传入u_PickedFace变量,也就是着色器中同名变量的存储地址(第85行)。

checkFace()函数的任务是,根据点击位置返回选中表面的编号(第166行)。该函数首先将u_PickedFace变量设为0(第168行),然后立刻调用draw()函数(在颜色缓冲区中,最终没有显示在屏幕上)进行绘制,此时每个表面的α值就取决于表面的编号。然后,从颜色缓冲区获取鼠标点击处的像素值(第171行),通过pixels[3]获取表面编号(即α分量,索引为3)。checkFace()函数返回选中的表面编号,执行流程回到鼠标点击事件响应函数中,用选中的表面编号重新绘制立方体(第86~87行),并在屏幕上显示出来,如前所述。

示例效果

WebGL 选中一个表面_第2张图片

你可能感兴趣的:(WebGL,webgl)