- DeepSeek:AI赋能的无限可能——从日常生活到职业进阶的全场景探索
Hello kele
人工智能人工智能
引言在人工智能技术飞速发展的今天,DeepSeek作为一款国产AI工具,凭借其强大的推理能力、自然语言处理效率和场景化应用潜力,正在重塑人类解决问题的方式。从撰写演讲稿到制定投资策略,从家庭教育到企业管理,DeepSeek通过“自然语言对话”的交互模式,将复杂任务简化为几步提示词的输入,真正实现了“所想即所得”。本文将从七大核心场景出发,系统解析DeepSeek如何成为个人与组织的智能助手,推动效
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 人工智能开发趋势
光影少年
人工智能
人工智能开发趋势:未来技术的演进与创新引言人工智能(AI)正在以惊人的速度发展,并在各行各业中发挥越来越重要的作用。从自然语言处理到计算机视觉,从自动化决策到自主学习,AI的发展方向正变得更加智能化、自动化和人性化。本文将探讨当前AI开发的最新趋势,并展望未来的发展方向。1.生成式AI的崛起近年来,生成式AI(如ChatGPT、StableDiffusion、DALL·E)展现出强大的内容创作能力
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- [Elasticsearch] refresh/flush/merge概念及Api
小鱼收藏夹
elasticsearch大数据搜索引擎
一、Refresh操作默认情况下,Elasticsearch写入的数据会存在于内存缓冲区中,此时并没有落入segment,而是等待index.refresh_interval的时间间隔后,数据会落入到segment中,此时才可以被检索;而refresh操作简而言之就是将内存缓冲区的数据刷入segement中,使其可以被索引;而默认情况下es配置index.refresh_interval为1s,即
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 【大模型基础_毛玉仁】0.系列文章
XiaoJ1234567
大模型基础_毛玉仁大语言模型基础语言模型大模型基础_毛玉仁
更多内容:XiaoJ的知识星球系列文章【大模型基础_毛玉仁】系列文章参考本系列文章,是对浙江大学毛玉仁、高云君等人著作的《大模型基础》的阅读笔记。原书涵盖传统语言模型、大语言模型架构、提示工程、参数高效微调、模型编辑和检索增强生成等几大模块。原书参考链接及目录如下:《大模型基础》Github:https://github.com/ZJU-LLMs/Foundations-of-LLMs《大模型基础
- 【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架
木亦汐丫
大模型语言模型sqlagiai数据库人工智能embedding
简介Vanna是基于检索增强(RAG)的sql生成框架Vanna使用一种称为LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的SQL查询)上进行训练的,并通过预测响应提示中最有可能的下一个单词或“标记”来工作。Vanna优化了提示(通过向量数据库使用嵌入搜索)并微调LLM模型以生成更好的SQL。Vanna可以使用和试验许多不同的LLM,以获得最准确的结果。V
- 11页PDF | DeepSeek平民化:AI助力数据治理整体方案(附下载)
Leo.yuan
大数据人工智能
一、前言这份报告介绍了一种基于人工智能(AI)的智能数据治理整体方案,旨在通过AI的自然语言处理、学习能力、理解与推理能力等技术手段,解决传统数据治理中存在的问题,提升企业数据管理能力和效率。方案以高质量数据资产知识库为基础,结合智能化技术工具箱,针对数据治理中的痛点场景(如文档编写、元数据管理、数据标准、数据质量、数据安全、数据资产盘点等)提供智能化解决方案。通过AI技术的应用,方案能够实现数据
- (七) Java集合面试宝典:轻松拿下集合类问题
Java_young
JAVAjava面试开发语言
集合的框架体系集合的主要体系一、集合概述主要分为两大类:Collection接口体系和Map接口体系。(一)Collection接口体系Collection是集合框架中的顶层接口,它又分为List、Set和Queue(队列)三种主要的子接口。(二)Map接口体系Map接口用于存储键值对,键是唯一的,通过键可以快速检索对应的值。二、List接口及其实现类List是一个有序的集合,允许重复的元素。实现
- 目前市场上的人工智能大模型有哪些?
国货崛起
大模型人工智能人工智能
截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:国外:自然语言处理(NLP)大模型:OpenAIGPT系列:GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。Google的Transformer系列:BERT(Bidirection
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- FastGPT 源码:混合检索调用链路
窝窝和牛牛
FastGPT人工智能开源
文章目录FastGPT源码:混合检索调用链路1.入口函数2.核心搜索函数3.RRF合并函数4.Rerank重排序函数5.完整流程FastGPT源码:混合检索调用链路主要调用链路如下:1.入口函数在dispatchDatasetSearch(packages/service/core/workflow/dispatch/dataset/search.ts):exportasyncfunctiondi
- 【博汇学术】计算机领域期刊在线征稿!
博汇学术
期刊推荐科睿唯安论文阅读经验分享
我处现征期刊详情如下,仅展示部分:期刊征稿1、物联网区块链类(NEW)期刊分区:JCR1区,中科院1区-TOP,CCF-C影响因子:8.0-9.0检索情况:SCIE&EI录用周期:4-5个月左右录用征稿领域:有关物联网区块链领域相关研究,如AIoT赋能的智能、安全、绿色供应链系统,通过物联网、AI、区块链等技术提升效率、可持续性和透明度等2、智能网络类期刊分区:JCR1区,中科院2区影响因子:7.
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 如何结合NLP(自然语言处理)技术提升OCR系统的语义理解和上下文感知能力?
金智维科技官方
自然语言处理ocr人工智能
光学字符识别(OCR)技术能够快速从文档、图像中提取文本信息,目前已经广泛应用于金融、教育、医疗、物流等领域。然而,传统OCR技术的功能主要集中在字符提取和简单的结构化输出上,难以处理复杂场景中涉及的语义理解与上下文感知问题。而通过将自然语言处理(NLP)技术与OCR相结合,可以极大提升系统对文本的语义理解能力,为多场景应用赋予更高的智能化水平。虽然OCR在文本识别的准确性和速度上不断提升,但面对
- 基于Python 和 DeepSeek API 实现文本分类
修破立生
大模型python人工智能
在自然语言处理(NLP)领域,文本分类是一项非常重要的任务,它可以帮助我们将大量的文本数据自动归类到不同的类别中。传统的文本分类方法有很多,而近年来,利用大模型进行文本分类逐渐成为一种流行且高效的方式。本文将介绍如何使用Python编写代码,结合DeepSeekAPI实现文本分类的功能,并探讨使用大模型方法进行文本分类与其他方法的区别。1代码概述我们的代码主要实现了以下几个功能:创建一个DeepS
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- 使用milvus-sdk-go的迭代器导出数据
shulu
milvus向量数据库milvusgolang开发语言
使用milvus-sdk-go的迭代器导出数据迭代器是一种功能强大的工具,可帮助您使用主键值和布尔表达式迭代集合中的大量数据或所有数据。这可以显著改善您检索数据的方式。与传统的offset和limit参数用法不同,后者可能会随着时间的推移而变得效率低下,而迭代器提供了更具可扩展性的解决方案。当表数据很大,需要全量导出,我们可以使用迭代器,例如每次只查询1000行数据,直到所有数据查询完成,同时也可
- OLMo 7B:推动自然语言处理领域的技术革新
单皎娥
OLMo7B:推动自然语言处理领域的技术革新OLMo-7B项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/OLMo-7B引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。然而,在实际应用中,NLP技术仍然面临着诸多挑战,如语境理解、信息抽取、情感分析等。为了解决这些问题,艾伦人工智能研究所(AI2)推出了OLMo系列模型,其中
- RAG组件:向量数据库(Milvus)
CITY_OF_MO_GY
milvus人工智能
在当前大模型盛行的时代,大模型的垂类微调、优化成为产业落地、行业应用的关键;RAG技术应运而生,主要解决大模型对专业知识、实效性知识欠缺的问题;RAG的核心工作逻辑是将专业知识、实效知识等大模型欠缺的知识进行收集、打包、保存为一个知识库,在用到该部分知识的时候,可以通过检索关键信息,将知识库內对应知识片段进行返回,再整合为一个结构化的prompt(提示词)输入给大模型,这样以来,大模型就可以结合这
- Rust编程实战:手把手教你打造命令行文本搜索工具!
今天也想MK代码
rust编程实战rustjava算法
知识点结构体声明和方法模块化文件处理测试模块异常处理功能通过命令行的形式触发,根据用户提供的关键字在文本检索。执行命令如下:cargorun--keywordfilepath实现细节拆分获取执行参数读取文本内容检索关键字实现创建项目cargonewminigrep实现参数处理在src目录下新建config.rs文件pubstructConfig{pubquery:String,pubfile_pa
- 大模型技术在网络安全领域的应用与发展
蓝色的香菇
web安全安全大模型
一、概述大模型技术,尤其是深度学习和自然语言处理领域的大型预训练模型,近年来在网络安全领域得到了广泛应用。这些模型通过其强大的数据处理能力和泛化能力,为网络安全带来了新的机遇和挑战。本文将对大模型技术在网络安全领域的应用进行全面分析,识别关键应用进展,并探讨其对网络安全领域的潜在影响。二、大模型技术在网络安全领域的应用安全运营网络日志分析:大模型可以通过分析大量网络日志,自动识别异常行为和潜在威胁
- 文本标注工具(brat)
deepdata_cn
文本标注文本标注
文本标注是自然语言处理领域中的一项基础且关键的任务,它主要是指专业的标注人员或借助特定的标注工具,按照一定的规则和标准,对文本内容进行标记和注释,从而赋予文本特定的语义信息和结构信息。具体来说,标注人员会根据任务需求,在文本中识别并标记出各种元素,比如将文本中的人名、地名、组织机构名等标注为不同的实体类型,确定文本中不同实体之间存在的关系,像因果关系、所属关系等,还会对文本中的特定事件进行标注,记
- 职坐标AIGC课程实战项目深度解析
职坐标在线
其他
内容概要在人工智能技术加速渗透各行业的背景下,职坐标IT培训体系中的AIGC课程以实战项目经验为核心,构建了从基础理论到产业落地的立体化培养框架。课程聚焦人工智能生成内容(AIGC)的核心技术链,涵盖自然语言处理、生成模型架构及多模态数据融合等模块,通过电商智能客服系统与新媒体文案生成工具两类典型场景的深度实践,强化学员对模型训练、参数调优及商业落地的综合能力。为适配行业需求,课程设计采用“三阶递
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 深入检索:专业知识检索的高级算法与架构策略
是小旭啊
架构
在检索专业知识层需要涵盖更高级的检索技术,包括工程架构和算法策略。一、工程架构工程架构在构建检索系统中决定了系统的可扩展性、高可用性和性能。比如需要考虑的基本点:分布式架构:水平扩展:采用分布式架构,将检索任务分布到多个节点上,实现水平扩展。这可以通过将索引数据分片存储在不同的节点上,并使用分布式文件系统或对象存储来存储大规模的索引数据。任务分配:设计任务调度器,负责将查询请求分配到空闲的节点上进
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi