给定一个二维矩阵 matrix
,以下类型的多个请求:
(row1, col1)
,右下角 为 (row2, col2)
。实现 NumMatrix
类:
NumMatrix(int[][] matrix)
给定整数矩阵 matrix
进行初始化int sumRegion(int row1, int col1, int row2, int col2)
返回 左上角 (row1, col1)
、右下角 (row2, col2)
所描述的子矩阵的元素 总和 。示例 1:
输入:
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
104
次 sumRegion
方法class NumMatrix {
public:
vector<vector<int>> sums;
NumMatrix(vector<vector<int>>& matrix) {
int m = matrix.size();
if (m > 0) {
int n = matrix[0].size();
sums.resize(m + 1, vector<int>(n + 1));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
sums[i + 1][j + 1] = sums[i][j + 1] + sums[i + 1][j] - sums[i][j] + matrix[i][j];
}
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2 + 1][col2 + 1] - sums[row1][col2 + 1] - sums[row2 + 1][col1] + sums[row1][col1];
}
};
作者:力扣官方题解
链接:https://leetcode.cn/problems/range-sum-query-2d-immutable/solutions/627420/er-wei-qu-yu-he-jian-suo-ju-zhen-bu-ke-b-2z5n/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。