zookeeper集群+kafka集群

文章目录

  • zookeeper概述
    • zookeeper定义
    • zookeeper工作机制
    • zookeeper特点
    • zookeeoer数据结构
    • zookeeper应用场景
      • 统一命名服务
      • 统一配置管理
      • 统一集群管理
      • 服务器动态上下线
      • 软负载均衡
      • Zookeeper 选举机制
        • 第一次启动选举机制
        • 非第一次启动选举机制
    • 部署zookeeper集群
  • Kafka概述
    • 为什么需要消息队列(MQ)
    • 使用消息队列的好处
    • 消息队列的两种模式
    • Kafka 定义
    • Kafka简介
    • Kafka的特性
    • Kafka系统架构
      • 分区的原因
    • 部署kafka集群
        • 查看当前服务器中的所有 topic
        • 查看某个 topic 的详情
        • 发布消息
        • 消费消息
        • 修改分区数
        • 删除 topic
    • Kafka 架构深入
      • 数据可靠性保证
      • 数据一致性问题
      • ack 应答机制


zookeeper概述

zookeeper定义

Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。

zookeeper工作机制

Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。也就是说 Zookeeper = 文件系统 + 通知机制。

zookeeper特点

  1. Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
  2. Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。
  3. 全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
  4. 更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。
  5. 数据更新原子性,一次数据更新要么成功,要么失败。
  6. 实时性,在一定时间范围内,Client能读到最新数据。

zookeeoer数据结构

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。

zookeeper应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

统一命名服务

在分布式环境下,经常需要对应用、服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。

统一配置管理

  1. 分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
  2. 配置管理可交由zookeeper实现。可将配置信息写入zookeeper上的一个znode。各个客户端服务器监听这个znode。一旦znode中的数据被修改,zookeeper将通知各个客户端服务器。

统一集群管理

  1. 分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
  2. zookeeper可以实现实时监控节点状态变化。可将节点信息写入zookeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。

服务器动态上下线

客户端能实时洞察到服务器上下线的变化。

软负载均衡

在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。

Zookeeper 选举机制

第一次启动选举机制
  1. 服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
  2. 服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
  3. 服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;
  4. 服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息

你可能感兴趣的:(kafka,java-zookeeper,zookeeper)