PT@全概率公式和贝叶斯公式@后验概率和信念度量

文章目录

    • abstract
    • 完备事件组(划分)
      • 基本性质
    • 全概率公式
    • 贝叶斯公式
    • 对立事件下的常用形式
    • 先验概率和后验概率
    • 概率作为衡量人们对客观事件的信念度量
    • 补充
      • 条件概率的链式法则
        • More than two events
        • Example
      • More than two random variables(多维随机变量下的链式乘法法则)
        • Example

abstract

  • 全概率公式和bayes公式及其应用
  • 后验概率和信念度量

完备事件组(划分)

  • 设有限集 I = { 1 , ⋯   , n } I=\{1,\cdots,n\} I={1,,n};试验 E E E的样本空间为 Ω \Omega Ω
  • { B i ; i ∈ I } \{B_i;i\in{I}\} {Bi;iI}满足:
    • ⋃ i = 1 n B i = Ω \bigcup_{i=1}^{n}B_i=\Omega i=1nBi=Ω
    • B i B j = ∅ ; i ≠ j B_iB_j=\varnothing;i\neq j BiBj=;i=j
  • 则称 { B i ; i ∈ I } \{B_i;i\in{I}\} {Bi;iI} Ω \Omega Ω的一个完备事件组,也称为划分

基本性质

  • 完备事件组 { B i ; i ∈ I } \{B_i;i\in{I}\} {Bi;iI},试验的任意一个样本点(任意一次试验结果)都属于且仅属于某一个 B i B_i Bi

全概率公式

  • 设试验E的样本空间为 S S S, A A A E E E的事件

  • {   B i ∣ i ∈ I   } \set{B_i|i\in I} {BiiI}是一个 S S S的划分, P ( B i ) > 0 , i ∈ I P(B_i)>0,i\in{I} P(Bi)>0,iI,则 P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

    • 那么 P ( A ) = ∑ i ∈ I P ( A ∣ B i ) P ( B i ) P(A)=\sum\limits_{i\in I}P(A|B_i)P(B_i) P(A)=iIP(ABi)P(Bi)
  • 证明:

    • 显然 A B i ⊂ B i AB_i\sub B_i ABiBi,又 B i B j = ∅ B_iB_j=\varnothing BiBj=,所以 ( A B i ) ( A B j ) = A ( B i B j ) = A ∅ = ∅ (AB_i)(AB_j)=A(B_iB_j)=A\emptyset=\emptyset (ABi)(ABj)=A(BiBj)=A=, ( i ≠ j ) (i\neq{j}) (i=j)

    • P ( A ∣ B i ) P ( B i ) = P ( A B i ) P(A|B_i)P(B_i)=P(AB_i) P(ABi)P(Bi)=P(ABi)

    • 证法1:

      • ∑ i ∈ I P ( A ∣ B i ) P ( B i ) = ∑ i ∈ I P ( A B i ) \sum\limits_{i\in I}P(A|B_i)P(B_i)=\sum\limits_{i\in I}P(AB_i) iIP(ABi)P(Bi)=iIP(ABi)
        • = P ( A B 1 ∪ A B 2 ∪ ⋯ ∪ A B n ) =P(AB_1\cup{AB_2}\cup\cdots\cup{A{B_n}}) =P(AB1AB2ABn)
        • = P ( A ∩ ( ⋃ i ∈ I B i ) ) =P\left(A\cap\left(\bigcup\limits_{i\in I}B_i\right)\right) =P(A(iIBi))
        • = P ( A Ω ) =P(A\Omega) =P(AΩ)
        • = P ( A ) =P(A) =P(A)
    • 证法2:

      • A = A S = A ( B 1 ∪ ⋯ ∪ B n ) A=AS=A(B_1\cup\cdots\cup{B_n}) A=AS=A(B1Bn)= A B 1 ∪ ⋯ ∪ A B n AB_1\cup\cdots\cup{A{B_n}} AB1ABn
      • P ( A ) P(A) P(A)= P ( A B 1 ∪ ⋯ ∪ A B n ) P(AB_1\cup\cdots\cup{A{B_n}}) P(AB1ABn)= ∑ i = 1 n P ( A B i ) \sum_{i=1}^{n}P(AB_i) i=1nP(ABi)= ∑ i ∈ I P ( A ∣ B i ) P ( B i ) \sum\limits_{i\in I}P(A|B_i)P(B_i) iIP(ABi)P(Bi)

  • 某个含有20个球的箱子

    • 含有0,1,2只次品的概率分别为0.8,0.1,0.1

      • 记: A i A_i Ai={箱子包含的残次品数量为 i i i个}
        • P ( A 0 ) = 0.8 P(A_0)=0.8 P(A0)=0.8
        • P ( A 1 ) = P ( A 2 ) = 0.1 P(A_1)=P(A_2)=0.1 P(A1)=P(A2)=0.1
    • B B B={抽中的4件产品都是正品}

  • 那么发生事件 B B B的概率?

    • 显然 A 0 , A 1 , A 2 A_0,A_1,A_2 A0,A1,A2构成试验E{观察箱子中的全部球的正品数,样本空间为{0,1,2}}的样本空间的一个划分

    • 而事件 B B B进行的试验 F F F{观察取出的4个抽样品的正品数,样本空间为{0,1,2}}

    • 容易根据古典概型公式计算(因为此时的样本空间已知)以下条件概率(这里不是用条件概率公式展开计算,这会绕回来)

      • P ( B ∣ A 0 ) = ( 20 4 ) ( 20 4 ) = 1 P(B|A_0)=\frac{\binom{20}{4}}{\binom{20}{4}}=1 P(BA0)=(420)(420)=1

      • P ( B ∣ A 1 ) = ( 19 4 ) ( 20 4 ) = ( 19 ∗ 18 ∗ 17 ∗ 16 ) ∗ ( 4 ∗ 3 ∗ 2 ∗ 1 ) ( 20 ∗ 19 ∗ 18 ∗ 17 ) ∗ ( 4 ∗ 3 ∗ 2 ∗ 1 ) = 4 5 P(B|A_1)=\frac{\binom{19}{4}}{\binom{20}{4}}=\frac{(19*18*17*16)*(4*3*2*1)}{(20*19*18*17)*(4*3*2*1)}=\frac{4}{5} P(BA1)=(420)(419)=(20191817)(4321)(19181716)(4321)=54

        • 其中 Ω A 1 = Ω \Omega_{A_1}=\Omega ΩA1=Ω
      • P ( B ∣ A 2 ) = ( 18 4 ) ( 20 4 ) = 12 19 P(B|A_2)=\frac{\binom{18}{4}}{\binom{20}{4}}=\frac{12}{19} P(BA2)=(420)(418)=1912

    • 根据全概率公式 P ( B ) = ∑ i = 1 3 P ( B ∣ A i ) P ( A i ) = 0.943 P(B)=\sum\limits_{i=1}^{3}P(B|A_i)P(A_i)=0.943 P(B)=i=13P(BAi)P(Ai)=0.943

    • Note:这里试验 F F F的样本空间恰好和E的样本空间重复,但如果箱子中的次品高达4个以上,那么 F F F的样本空间 0 , 1 , 2 , 3 , 4 {0,1,2,3,4} 0,1,2,3,4是包含于 E E E的样本空间的

贝叶斯公式

  • bayes公式基于上述的全概率公式,是一个更加综合的公式,但是原理是简单的
  • 设试验E的样本空间为 S S S, A A A E E E的事件
  • {   B i ∣ i ∈ I   } \set{B_i|i\in I} {BiiI}是一个 S S S的划分, P ( A ) > 0 , P ( B i ) > 0 , i ∈ I P(A)>0,P(B_i)>0,i\in{I} P(A)>0,P(Bi)>0,iI,则
    • P ( B i ∣ A ) P(B_i|A) P(BiA)= P ( A B i ) P ( A ) \frac{P(AB_i)}{P(A)} P(A)P(ABi)= P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(A|B_j)P(B_j)} j=1nP(ABj)P(Bj)P(ABi)P(Bi); i = 1 , ⋯   , n i=1,\cdots,n i=1,,n;此公式为bayes公式
  • 证明:由条件概率,乘法定理,全概率公式,贝叶斯公式显然成立
    • P ( B i ∣ A ) P(B_i|A) P(BiA)= P ( A B i ) P ( A ) \frac{P(AB_i)}{P(A)} P(A)P(ABi)
    • P ( A B i ) P(AB_i) P(ABi)= P ( A ∣ B i ) P ( B i ) P(A|B_i)P(B_i) P(ABi)P(Bi)
      • 注意在bayes公式中,我们要求的是 P ( B i ∣ A ) P(B_i|A) P(BiA),因而 P ( A B i ) P(AB_i) P(ABi)= P ( B i ∣ A ) P ( A ) P(B_i|A)P(A) P(BiA)P(A)就不合适,否则公式无法有效计算
      • 而因该用 P ( A B i ) P(AB_i) P(ABi)= P ( A ∣ B i ) P ( B i ) P(A|B_i)P(B_i) P(ABi)P(Bi)来算
    • P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

  • 次品来源问题:设一批零件来自三个供应商

    • 供应商 次品率 进货份额
      1 0.02 0.15
      2 0.01 0.80
      3 0.03 0.05
  • 试验内容:从零件中抽取一件

    • A={取到的产品是次品}
    • B i B_i Bi={次品零件来自第 i i i个厂商}
      • P ( B 1 ) P(B_1) P(B1)= 0.15 0.15 0.15; P ( A ∣ B 1 ) P(A|B_1) P(AB1)=0.02
      • P ( B 2 ) P(B_2) P(B2)=0.80; P ( A ∣ B 2 ) P(A|B_2) P(AB2)=0.01
      • P ( B 3 ) P(B_3) P(B3)=0.05; P ( A ∣ B 3 ) P(A|B_3) P(AB3)=0.03
  • 求该样品是次品的概率:

    • 由全概率公式: P ( A ) = ∑ i = 1 3 P ( A ∣ B i ) P ( B i ) P(A)=\sum\limits_{i=1}^{3}P(A|B_i)P(B_i) P(A)=i=13P(ABi)P(Bi)= 0.02 ∗ 0.15 + 0.01 ∗ 0.80 + 0.03 ∗ 0.05 = 0.0125 0.02*0.15+0.01*0.80+0.03*0.05=0.0125 0.020.15+0.010.80+0.030.05=0.0125
  • 从中取出一件,发现是次品,那么来自产商 i i i的概率是多少 ( i = 1 , 2 , 3 ) (i=1,2,3) (i=1,2,3)

    • 由贝叶斯公式:
      • P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) P ( A ) P(B_i|A)=\frac{P(B_iA)}{P(A)}=\frac{P(A|B_i)P(B_i)}{P(A)} P(BiA)=P(A)P(BiA)=P(A)P(ABi)P(Bi)
    • 分别可以计算出:
      • P ( B 1 ∣ A ) = 0.02 ∗ 0.15 0.0125 = 0.24 P(B_1|A)=\frac{0.02*0.15}{0.0125}=0.24 P(B1A)=0.01250.020.15=0.24
      • P ( B 2 ∣ A ) P(B_2|A) P(B2A)= 0.64 0.64 0.64
      • P ( b 3 ∣ A ) P(b_3|A) P(b3A)= 0.12 0.12 0.12

对立事件下的常用形式

  • 全概率公式和beyes公式在 n = 2 n=2 n=2的时候(事件 B , B ‾ B,\overline{B} B,B构成样本空间的一个划分)最常用
  • 此时分别有:
    • P ( A ) = P ( A B ) + P ( A B ‾ ) P(A)=P(AB)+P(A\overline{B}) P(A)=P(AB)+P(AB)= P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(AB)P(B)+P(AB)P(B)
    • P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)= P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) \frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline{B})P(\overline{B})} P(AB)P(B)+P(AB)P(B)P(AB)P(B)

先验概率和后验概率

  • 机器与产品合格率问题

  • 设机器正常时,生产的产品合格率为0.9,否则合格率为0.3

  • 如果机器开机后,正常的概率是0.75(先验概率)

  • 某天该机器第一件产品是合格的,机器正常的概率是多少?

  • 分析:

    • A={第一件产品合格}
    • B={机器正常}
    • 所求概率表达式为: P ( B ∣ A ) = ? P(B|A)=? P(BA)=?
  • 根据假设可知:

    • P ( A ∣ B ) = 0.9 ; P ( A ∣ B ‾ ) = 0.3 P(A|B)=0.9;P(A|\overline{B})=0.3 P(AB)=0.9;P(AB)=0.3
    • P ( B ) = 0.75 , P ( B ‾ ) = 0.25 P(B)=0.75,P(\overline{B})=0.25 P(B)=0.75,P(B)=0.25
      • B , B ‾ B,\overline{B} B,B构成了样本空间的一个划分(即机器要么正常,要么不正常)
    • 由全概率公式 P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)={P(A|B)P(B)+P(A|\overline{B})P(\overline{B})} P(A)=P(AB)P(B)+P(AB)P(B)= 0.9 ∗ 0.75 + 0.3 ∗ 0.25 = 0.75 0.9*0.75+0.3*0.25=0.75 0.90.75+0.30.25=0.75
    • 那么根据Bayes公式, P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A)=\frac{P(A|B)P(B)}{P(A)} P(BA)=P(A)P(AB)P(B)= 0.9 ∗ 0.75 0.75 = 0.9 \frac{0.9*0.75}{0.75}=0.9 0.750.90.75=0.9,
    • 即第一件产品合格的条件下,机器正常的后验概率概率为0.9
  • 后验概率是对先验概率的一种修正

  • 后验概率和先验概率的解释分为两派

    • 客观派:所有第一件产品是合格的日子里,100天内平均由90天机器是正常的
    • 主观派:反映的是试验前后人们主观上对机器状态的不同信念

概率作为衡量人们对客观事件的信念度量

  • 以伊索寓言狼来了为例
  • A A A={孩子说谎}; B B B={孩子可信},假设一个可信的孩子**相对不容易说谎,**不妨设这个概率为0.1,即 P ( A ∣ B ) P(A|B) P(AB)=0.1;反之,一个不可信的孩子说谎话的概率为0.5,即 P ( A ∣ B ‾ ) = 0.5 P(A|\overline{B})=0.5 P(AB)=0.5
  • 设村民遇到一个可信的孩子的概率为0.8,即 P ( B ) P(B) P(B)=0.8
  • 那么孩子说慌话的概率为 P ( A ) P(A) P(A)= P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(AB)P(B)+P(AB)P(B)= 0.1 × 0.8 + 0.5 × 0.2 0.1\times{0.8}+0.5\times{0.2} 0.1×0.8+0.5×0.2=0.18
  • 现在假设孩子说了谎话一次后,由bayes公式计算这个孩子是可信的概率
    • P ( B ∣ A ) P(B|A) P(BA)= P ( B A ) P ( A ) \frac{P(BA)}{P(A)} P(A)P(BA)= P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) \frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline{B})P(\overline{B})} P(AB)P(B)+P(AB)P(B)P(AB)P(B)= 0.1 × 0.8 0.18 \frac{0.1\times{0.8}}{0.18} 0.180.1×0.8= 4 9 ≈ 0.444 \frac{4}{9}\approx{0.444} 940.444
    • 即孩子可信的后验概率降低到了0.444
  • 如果孩子再次撒谎,令 P ( B ) = 0.444 P(B)=0.444 P(B)=0.444按照上述方式再次计算后验概率:
    • P ( B ∣ A ) P(B|A) P(BA)= 0.444 × 0.1 0.444 × 0.1 + 0.566 × 0.5 \frac{0.444\times{0.1}}{0.444\times{0.1}+0.566\times{0.5}} 0.444×0.1+0.566×0.50.444×0.1= 0.138 0.138 0.138
  • 可见,孩子撒了两次慌后,其可信的后验概率已经降低到了0.138,给人的感觉几乎是一个不可信的人

补充

条件概率的链式法则

  • Chain rule (probability) - Wikipedia

  • In probability theory, the chain rule (also called the general product rule[1][2]) permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities.

  • The rule is useful in the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  • 更一般的,如果反复套用上述公式,我们可以得到:

    • 下面得到公式看起来复杂,其实用起来是很自然
  • P ( ∏ i = 1 n A i ) = P ( ( ∏ i = 1 n − 1 A i ) A n ) = P ( A n ∣ ∏ i = 1 n − 1 A i ) P ( ∏ i = 1 n − 1 A i ) 设通项 P k = P ( ∏ i = 1 k A i ) = P ( ( ∏ i = 1 k − 1 A i ) A k ) = P ( A k ∣ ∏ i = 1 k − 1 A i ) P ( ∏ i = 1 k − 1 A i ) T ( k ) = ∏ i = 1 k A i k = n , n − 1 , n − 2 , ⋯   , 1 P k = P ( T ( k ) ) = P ( A k ∣ T ( k − 1 ) ) P ( T ( k − 1 ) ) ⋮ P(\prod_{i=1}^{n}A_i)=P((\prod_{i=1}^{n-1}A_i)A_n) =P(A_n|\prod_{i=1}^{n-1}A_i)P(\prod_{i=1}^{n-1}A_i) \\ 设通项P_k= P(\prod_{i=1}^{k}A_i)=P((\prod_{i=1}^{k-1}A_i)A_k) =P(A_k|\prod_{i=1}^{k-1}A_i)P(\prod_{i=1}^{k-1}A_i) \\T(k)=\prod_{i=1}^{k}A_i \\k=n,n-1,n-2,\cdots,1 \\P_k=P(T(k))=P(A_k|T(k-1))P(T(k-1)) \\\vdots P(i=1nAi)=P((i=1n1Ai)An)=P(Ani=1n1Ai)P(i=1n1Ai)设通项Pk=P(i=1kAi)=P((i=1k1Ai)Ak)=P(Aki=1k1Ai)P(i=1k1Ai)T(k)=i=1kAik=n,n1,n2,,1Pk=P(T(k))=P(AkT(k1))P(T(k1))

  • 特别的 : P 2 = P ( A 1 A 2 ) = P ( A 2 ∣ A 1 ) P ( A 1 ) P 3 = P ( A 1 A 2 A 3 ) = P ( A 3 ∣ A 1 A 2 ) P ( A 1 A 2 ) = P ( A 3 ∣ A 1 A 2 ) P ( A 2 ∣ A 1 ) P ( A 1 ) 类似的 : P 4 = P ( A 1 A 2 A 3 A 4 ) = P ( A 4 ∣ A 1 A 2 A 3 ) P ( A 1 A 2 A 3 ) = P ( A 4 ∣ A 1 A 2 A 3 ) P ( A 3 ∣ A 1 A 2 ) P ( A 2 ∣ A 1 ) P ( A 1 ) P n = ∏ i = 1 n P ( A n − i + 1 ∣ ∏ j = 0 n − i A j ) 严格的说 , ∏ j = 1 n A j 应该作 ⋂ j = 1 n A j , 表示积事件 定义 P ( A 0 ) = 1 特别的:P_2=P(A_1A_2)=P(A_2|A_1)P(A_1) \\P_3=P(A_1A_2A_3)=P(A_3|A_1A_2)P(A_1A_2) \\=P(A_3|A_1A_2)P(A_2|A_1)P(A_1) \\类似的: \\P_4=P(A_1A_2A_3A_4)=P(A_4|A_1A_2A_3)P(A_1A_2A_3) \\=P(A_4|A_1A_2A_3)P(A_3|A_1A_2)P(A_2|A_1)P(A_1) \\ P_n=\prod_{i=1}^{n}P(A_{n-i+1}|\prod_{j=0}^{n-i}A_j) \\严格的说,\prod_{j=1}^{n}A_j应该作\bigcap\limits_{j=1}^{n}A_j,表示积事件 \\定义P(A_0)=1 特别的:P2=P(A1A2)=P(A2A1)P(A1)P3=P(A1A2A3)=P(A3A1A2)P(A1A2)=P(A3A1A2)P(A2A1)P(A1)类似的:P4=P(A1A2A3A4)=P(A4A1A2A3)P(A1A2A3)=P(A4A1A2A3)P(A3A1A2)P(A2A1)P(A1)Pn=i=1nP(Ani+1j=0niAj)严格的说,j=1nAj应该作j=1nAj,表示积事件定义P(A0)=1

  • 其他写法
    P n = ∏ i = 1 n P ( A n − i + 1 ∣ ⋂ j = 0 n − i A j ) 根据乘法交换律 ( 积事件调整书写顺序含义不变 ) P n = ∏ i = 1 n P ( A n − i + 1 ∣ ⋂ j = 0 n − i A j ) = ∏ i = 1 n P ( A i ∣ ⋂ j = 1 i − 1 A j ) 约定 ⋂ j = 1 0 A j 时省略该项 ( 作为必然事件 ) P_n=\prod_{i=1}^{n}P(A_{n-i+1}|\bigcap\limits_{j=0}^{n-i}A_j) \\根据乘法交换律(积事件调整书写顺序含义不变)\\ P_n=\prod_{i=1}^{n}P(A_{n-i+1}|\bigcap\limits_{j=0}^{n-i}A_j) =\prod_{i=1}^{n}P(A_{i}|\bigcap\limits_{j=1}^{i-1}A_j) \\约定\bigcap\limits_{j=1}^{0}A_j时省略该项(作为必然事件) Pn=i=1nP(Ani+1j=0niAj)根据乘法交换律(积事件调整书写顺序含义不变)Pn=i=1nP(Ani+1j=0niAj)=i=1nP(Aij=1i1Aj)约定j=10Aj时省略该项(作为必然事件)

  • 通常,公式右边的条件概率都是比较容易计算的

    • 通常利用条件概率的样本收缩来得出各个条件概率因子
    • 否则可能要考虑其他的计算积事件的方法
More than two events
  • For more than two events A 1 , … , A n A_{1},\ldots ,A_{n} A1,,An the chain rule extends to the formula P ( A n ∩ … ∩ A 1 ) = P ( A n ∣ A n − 1 ∩ … ∩ A 1 ) ⋅ P ( A n − 1 ∩ … ∩ A 1 ) {\displaystyle \mathrm {P} \left(A_{n}\cap \ldots \cap A_{1}\right)=\mathrm {P} \left(A_{n}|A_{n-1}\cap \ldots \cap A_{1}\right)\cdot \mathrm {P} \left(A_{n-1}\cap \ldots \cap A_{1}\right)} P(AnA1)=P(AnAn1A1)P(An1A1) which by induction may be turned into P ( A n ∩ … ∩ A 1 ) = ∏ k = 1 n P ( A k   ∣   ⋂ j = 1 k − 1 A j ) . {\displaystyle \mathrm {P} \left(A_{n}\cap \ldots \cap A_{1}\right)=\prod _{k=1}^{n}\mathrm {P} \left(A_{k}\,{\Bigg |}\,\bigcap _{j=1}^{k-1}A_{j}\right).} P(AnA1)=k=1nP(Ak j=1k1Aj).
Example
  • With four events ( n = 4 n=4 n=4), the chain rule is P ( A 1 ∩ A 2 ∩ A 3 ∩ A 4 ) = P ( A 4 ∣ A 3 ∩ A 2 ∩ A 1 ) ⋅ P ( A 3 ∩ A 2 ∩ A 1 ) = P ( A 4 ∣ A 3 ∩ A 2 ∩ A 1 ) ⋅ P ( A 3 ∣ A 2 ∩ A 1 ) ⋅ P ( A 2 ∩ A 1 ) = P ( A 4 ∣ A 3 ∩ A 2 ∩ A 1 ) ⋅ P ( A 3 ∣ A 2 ∩ A 1 ) ⋅ P ( A 2 ∣ A 1 ) ⋅ P ( A 1 ) {\displaystyle {\begin{aligned}\mathrm {P} (A_{1}\cap A_{2}\cap A_{3}\cap A_{4})&=\mathrm {P} (A_{4}\mid A_{3}\cap A_{2}\cap A_{1})\cdot \mathrm {P} (A_{3}\cap A_{2}\cap A_{1})\\&=\mathrm {P} (A_{4}\mid A_{3}\cap A_{2}\cap A_{1})\cdot \mathrm {P} (A_{3}\mid A_{2}\cap A_{1})\cdot \mathrm {P} (A_{2}\cap A_{1})\\&=\mathrm {P} (A_{4}\mid A_{3}\cap A_{2}\cap A_{1})\cdot \mathrm {P} (A_{3}\mid A_{2}\cap A_{1})\cdot \mathrm {P} (A_{2}\mid A_{1})\cdot \mathrm {P} (A_{1})\end{aligned}}} P(A1A2A3A4)=P(A4A3A2A1)P(A3A2A1)=P(A4A3A2A1)P(A3A2A1)P(A2A1)=P(A4A3A2A1)P(A3A2A1)P(A2A1)P(A1)

  • 多次摸多颜色球问题

    • 设有5红,3黑,2白

    • 问,第三次才摸到白球的概率

      • 即,前两次的摸球结果都不是白色的

      • 为了方便讨论问题,记: A i = 第 i 次摸出白球 ; i = 1 , 2 , 3 A_i={第i次摸出白球};i=1,2,3 Ai=i次摸出白球;i=1,2,3

        • 如果不是白球,则记为 A i ‾ \overline{A_i} Ai
      • P = P ( A 1 ‾   A 2 ‾ A 3 ) = P ( A 3 ∣ A 1 ‾   A 2 ‾ ) P ( A 2 ‾ ∣ A 1 ‾ ) P ( A 1 ‾ ) = 2 10 − 2 8 − 1 10 − 1 8 10 = 2 8 7 9 8 10 = 7 45 P=P(\overline{A_1}\ \overline{A_2}A_3) =P(A_3|\overline{A_1}\ \overline{A_2}) P(\overline{A_2}|\overline{A_1})P(\overline{A_1}) \\=\frac{2}{10-2}\frac{8-1}{10-1}\frac{8}{10} =\frac{2}{8}\frac{7}{9}\frac{8}{10} =\frac{7}{45} P=P(A1 A2A3)=P(A3A1 A2)P(A2A1)P(A1)=102210181108=8297108=457

        • 其中 P ( B n ∣ B n − 1 ⋯ B 1 ) P(B_n|B_{n-1}\cdots{B_1}) P(BnBn1B1)表示已经有 n − 1 n-1 n1个求被摸出,现在再摸出一个球,发生事件 B n B_n Bn的概率

        • 例如 P ( A 2 ‾ ∣ A 1 ‾ ) P(\overline{A_2}|\overline{A_1}) P(A2A1)表示已经摸出一个球(而且不是白球)的情况下,再摸出一个求,而且仍然不是白球的概率

        • 实时上,稍微熟练点的高中生,就可以直接写出 p = 2 8 7 9 8 10 p=\frac{2}{8}\frac{7}{9}\frac{8}{10} p=8297108

More than two random variables(多维随机变量下的链式乘法法则)

  • Consider an indexed collection of random variables X 1 , … , X n {\displaystyle X_{1},\ldots ,X_{n}} X1,,Xn taking possible values x 1 , … , x n x_{1},\dots ,x_{n} x1,,xn respectively.

  • Then, to find the value of this member of the joint distribution, we can apply the definition of conditional probability to obtain:

  • P ( X n = x n , ⋯   , X 1 = x 1 ) = P ( X n = x n ∣ X n − 1 = x n − 1 , … , X 1 = x 1 ) ⋅ P ( X n − 1 = x n − 1 , … , X 1 = x 1 ) {\displaystyle \mathrm {P} \left(X_{n}=x_{n},\cdots ,X_{1}=x_{1}\right)=\mathrm {P} \left(X_{n}=x_{n}|X_{n-1}=x_{n-1},\ldots ,X_{1}=x_{1}\right)\cdot \mathrm {P} \left(X_{n-1}=x_{n-1},\ldots ,X_{1}=x_{1}\right)} P(Xn=xn,,X1=x1)=P(Xn=xnXn1=xn1,,X1=x1)P(Xn1=xn1,,X1=x1)

  • Repeating this process with each final term and letting A k A_{k} Ak denote the event X k = x k {\displaystyle X_{k}=x_{k}} Xk=xk creates the product:

  • P ( ⋂ k = 1 n A k ) = ∏ k = 1 n P ( A k   ∣   ⋂ j = 1 k − 1 A j ) = ∏ k = 1 n P ( X k = x k   ∣   X 1 = x 1 , … X k − 1 = x k − 1 ) . {\displaystyle \mathrm {P} \left(\bigcap _{k=1}^{n}A_{k}\right)=\prod _{k=1}^{n}\mathrm {P} \left(A_{k}\,{\Bigg |}\,\bigcap _{j=1}^{k-1}A_{j}\right)=\prod _{k=1}^{n}\mathrm {P} \left(X_{k}=x_{k}\,|\,X_{1}=x_{1},\dots X_{k-1}=x_{k-1}\right).} P(k=1nAk)=k=1nP(Ak j=1k1Aj)=k=1nP(Xk=xkX1=x1,Xk1=xk1).

Example
  • With four variables ( n = 4 n=4 n=4), denote P ( x n   ∣   x n − 1 … , x 1 ) : = P ( X n = x n   ∣   X n − 1 = x n − 1 … , X 1 = x 1 ) {\displaystyle P(x_{n}\,|\,x_{n-1}\dots ,x_{1}):=P(X_{n}=x_{n}\,|\,X_{n-1}=x_{n-1}\dots ,X_{1}=x_{1})} P(xnxn1,x1):=P(Xn=xnXn1=xn1,X1=x1) for brevity.
  • Then, the chain rule produces this product of conditional probabilities: P ( x 4 , x 3 , x 2 , x 1 ) = P ( x 4 ∣ x 3 , x 2 , x 1 ) ⋅ P ( x 3 , x 2 , x 1 ) = P ( x 4 ∣ x 3 , x 2 , x 1 ) ⋅ P ( x 3 ∣ x 2 , x 1 ) ⋅ P ( x 2 , x 1 ) = P ( x 4 ∣ x 3 , x 2 , x 1 ) ⋅ P ( x 3 ∣ x 2 , x 1 ) ⋅ P ( x 2 ∣ x 1 ) ⋅ P ( x 1 ) {\displaystyle {\begin{aligned}\mathrm {P} (x_{4},x_{3},x_{2},x_{1})&=\mathrm {P} (x_{4}\mid x_{3},x_{2},x_{1})\cdot \mathrm {P} (x_{3},x_{2},x_{1})\\&=\mathrm {P} (x_{4}\mid x_{3},x_{2},x_{1})\cdot \mathrm {P} (x_{3}\mid x_{2},x_{1})\cdot \mathrm {P} (x_{2},x_{1})\\&=\mathrm {P} (x_{4}\mid x_{3},x_{2},x_{1})\cdot \mathrm {P} (x_{3}\mid x_{2},x_{1})\cdot \mathrm {P} (x_{2}\mid x_{1})\cdot \mathrm {P} (x_{1})\end{aligned}}} P(x4,x3,x2,x1)=P(x4x3,x2,x1)P(x3,x2,x1)=P(x4x3,x2,x1)P(x3x2,x1)P(x2,x1)=P(x4x3,x2,x1)P(x3x2,x1)P(x2x1)P(x1)

你可能感兴趣的:(概率论)