207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源

一、Flink架构及核心概念

1.系统架构

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第1张图片

  • JobMaster是JobManager中最核心的组件,负责处理单独的作业(Job)。
  • 一个job对应一个jobManager

 2.并行度

(1)并行度(Parallelism)概念

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。

流程序的并行度 = 其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。

(2)设置并行度

对某个具体算子设置并行度:

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

全局设置并行度:

env.setParallelism(2);

提交任务时指定:

  • 通过页面上传jar的时候可以指定
  • 可以在命令行启动的时候通过 -p 3指定

flink-conf.yaml中配置:

parallelism.default: 2

优先级:

代码中具体算子 > 代码中全局 > 提交任务指定 > 配置文件中指定

3.算子链

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第2张图片

(1)算子间的数据传输

*1)一对一(One-to-one,forwarding)

这种模式下,数据流维护着分区以及元素的顺序。它们之间不需要重新分区,也不需要调整数据的顺序。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于Spark中的窄依赖。

*2)重分区(Redistributing)

在这种模式下,数据流的分区会发生改变。每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于Spark中的shuffle。

(2)合并算子链

在Flink中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分 

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第3张图片

// 禁用算子链,该算子不会和前面和后面串在一起
.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 全局禁用算子链
env.disableChaining();

// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()

  • 当一对一的时候,每个运算量都很大,这个时候不适合串在一起。
  • 当需要定位具体问题的时候,不串在一起更容易排查问题

4.任务槽

(1)任务槽(Task Slots)概念

Flink中每一个TaskManager都是一个JVM进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。

TaskManager的计算资源是有限的,为了控制并发量,TaskManager对每个任务运行所占用的内存资源做出明确的划分,这就是所谓的任务槽(task slots)。

每个任务槽的大小是均等的,且任务槽之间的资源不可以互相借用。

如图,每个TaskManager有三个任务槽,每个槽运行自己的任务。槽的大小均等。

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第4张图片

(2)任务槽数量的设置

在Flink的/opt/module/flink-1.17.0/conf/flink-conf.yaml配置文件中,可以设置TaskManager的slot数量,默认是1个slot。

taskmanager.numberOfTaskSlots: 8

slot目前仅仅用来隔离内存,不会涉及CPU的隔离。在具体应用时,建议将slot数量配置为机器的CPU核心数。

(3)任务对任务槽的共享

在同一个作业中,不同任务节点的并行子任务可以放在同一个slot上执行

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第5张图片

 可以共享:

  • 同一个job中,不同算子的子任务才可以共享同一个slot。这些子任务是同时运行
  • 前提是:属于同一个slot共享组,默认都是“default”

手动指定共享组:

.map(word -> Tuple2.of(word, 1L)).slotSharingGroup("1");

共享的好处:允许我们保存完整的作业管道。这样一来,即使某个TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行

(4)任务槽和并行度的关系

  • 任务槽是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置
  • 并行度是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置

如果是yarn模式,申请的TaskManager的数量 = job并行度 / 每个TM的slot数量,向上取整

即:假设10个并行度的job,每个TM的slot是3个,那么需要10/3,向上取整,即需要最少4个TaskManager

二、作业提交流程

1.Standalone会话模式作业提交流程

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第6张图片

逻辑流图(StreamGraph)→ 作业图(JobGraph)→ 执行图(ExecutionGraph)→ 物理图(Physical Graph)。

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第7张图片

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第8张图片

  • 逻辑流图:列出并行度,算子,各算子之间关系(一对一还是需要重分区)
  • 作业图:将一对一的算子做算子链的优化,作业中间会有中间结果集
  • 执行图:将并行度展开,并标注每个并行处理的算子
  • 物理图:基本同执行图,是执行图的落地

2.Yarn应用模式作业提交流程

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第9张图片

三、 DataStream API

DataStream API是Flink的核心层API。一个Flink程序,其实就是对DataStream的各种转换。

207.Flink(二):架构及核心概念,flink从各种数据源读取数据,各种算子转化数据,将数据推送到各数据源_第10张图片

1.执行环境(Execution Environment)

(1)创建执行环境

*1)StreamExecutionEnvironment.getExecutionEnvironment();

它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境

*2)StreamExecutionEnvironment.createLocalEnvironment();

这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的CPU核心数

*3)StreamExecutionEnvironment
          .createRemoteEnvironment(
            "host",                   // JobManager主机名
            1234,                     // JobManager进程端口号
               "path/to/jarFile.jar"  // 提交给JobManager的JAR包
        );

这个方法返回集群执行环境。需要在调用时指定JobManager的主机名和端口号,并指定要在集群中运行的Jar包。

 (2)执行模式(Execution Mode)

流批一体:代码api是同一套,可以指定为 批,也可以指定为 流。

通话代码配置:

env.setRuntimeMode(RuntimeExecutionMode.BATCH);

通过命令行配置:

bin/flink run -Dexecution.runtime-mode=BATCH

(3)触发程序执行

当main()方法被调用时,并没有真正处理数据。只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”。

所以我们需要显式地调用执行环境的execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。

如果在一段代码里面执行多个任务,可以使用env.executeAsync();

package com.atguigu.env;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.RestOptions;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * TODO
 *
 * @author cjp
 * @version 1.0
 */
public class EnvDemo {
    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        conf.set(RestOptions.BIND_PORT, "8082");

        StreamExecutionEnvironment env = StreamExecutionEnvironment
//                .getExecutionEnvironment();  // 自动识别是 远程集群 ,还是idea本地环境
                .getExecutionEnvironment(conf); // conf对象可以去修改一些参数

//                .createLocalEnvironment()
//        .createRemoteEnvironment("hadoop102", 8081,"/xxx")

        // 流批一体:代码api是同一套,可以指定为 批,也可以指定为 流
        // 默认 STREAMING
        // 一般不在代码写死,提交时 参数指定:-Dexecution.runtime-mode=BATCH
        env.setRuntimeMode(RuntimeExecutionMode.BATCH);


        env
//                .socketTextStream("hadoop102", 7777)
                .readTextFile("input/word.txt")
                .flatMap(
                        (String value, Collector> out) -> {
                            String[] words = value.split(" ");
                            for (String word : words) {
                                out.collect(Tuple2.of(word, 1));
                            }
                        }
                )
                .returns(Types.TUPLE(Types.STRING, Types.INT))
                .keyBy(value -> value.f0)
                .sum(1)
                .print();

        env.execute();
        /** TODO 关于execute总结(了解)
         *     1、默认 env.execute()触发一个flink job:
         *          一个main方法可以调用多个execute,但是没意义,指定到第一个就会阻塞住
         *     2、env.executeAsync(),异步触发,不阻塞
         *         => 一个main方法里 executeAsync()个数 = 生成的flink job数
         *     3、思考:
         *         yarn-application 集群,提交一次,集群里会有几个flink job?
         *         =》 取决于 调用了n个 executeAsync()
         *         =》 对应 application集群里,会有n个job
         *         =》 对应 Jobmanager当中,会有 n个 JobMaster
         */
//        env.executeAsync();
        // ……
//        env.executeAsync();


    }
}

2.源算子(Source)

从Flink1.12开始,主要使用流批统一的新Source架构:

DataStreamSource stream = env.fromSource(…)

(1)创建pojo对象

需要空参构造器,所有属性的类型都是可以序列化的

package com.atguigu.bean;

import java.util.Objects;

/**
 * TODO
 *
 * @author cjp
 * @version 1.0
 */
public class WaterSensor {
    public String id;//水位传感器类型
    public Long ts;//传感器记录时间戳
    public Integer vc;//水位记录

    // 一定要提供一个 空参 的构造器
    public WaterSensor() {
    }

    public WaterSensor(String id, Long ts, Integer vc) {
        this.id = id;
        this.ts = ts;
        this.vc = vc;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public Long getTs() {
        return ts;
    }

    public void setTs(Long ts) {
        this.ts = ts;
    }

    public Integer getVc() {
        return vc;
    }

    public void setVc(Integer vc) {
        this.vc = vc;
    }

    @Override
    public String toString() {
        return "WaterSensor{" +
                "id='" + id + '\'' +
                ", ts=" + ts +
                ", vc=" + vc +
                '}';
    }


    @Override
    public boolean equals(Object o) {
        if (this == o) {
            return true;
        }
        if (o == null || getClass() != o.getClass()) {
            return false;
        }
        WaterSensor that = (WaterSensor) o;
        return Objects.equals(id, that.id) &&
                Objects.equals(ts, that.ts) &&
                Objects.equals(vc, that.vc);
    }

    @Override
    public int hashCode() {

        return Objects.hash(id, ts, vc);
    }
}

(2)从集合中读取数据

package com.atguigu.source;

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * TODO
 *
 * @author cjp
 * @version 1.0
 */
public class CollectionDemo {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // TODO 从集合读取数据
        DataStreamSource source = env
                .fromElements(1,2,33); // 从元素读
//                .fromCollection(Arrays.asList(1, 22, 3));  // 从集合读


        source.print();

        env.execute();

    }
}

(3)从文件读取数据

先添加配置:


            org.apache.flink
            flink-connector-files
            1.17.0
			
package com.atguigu.source;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.file.src.FileSource;
import org.apache.flink.connector.file.src.reader.TextLineInputFormat;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * TODO
 *
 * @author cjp
 * @version 1.0
 */
public class FileSourceDemo {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        // TODO 从文件读: 新Source架构

        FileSource fileSource = FileSource
                .forRecordStreamFormat(
                        new TextLineInputFormat(),
                        new Path("input/word.txt")
                )
                .build();

        env
                .fromSource(fileSource, WatermarkStrategy.noWatermarks(), "filesource")
                .print();


        env.execute();
    }
}
/**
 *
 * 新的Source写法:
 *   env.fromSource(Source的实现类,Watermark,名字)
 *
 */

(4)从Socket读取数据

DataStream stream = env.socketTextStream("localhost", 7777);

(5)从Kafka读取数据


    org.apache.flink
    flink-connector-kafka
    1.17.0
package com.atguigu.source;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.time.Duration;

/**
 * TODO
 *
 * @author cjp
 * @version 1.0
 */
public cl

你可能感兴趣的:(flink,大数据)