正态总体的样本均值与样本方差的分布定理

文章目录

      • 引理
      • 定理一
      • 定理二
      • 定理三
      • 定理四

引理

  1. 设总体 X X X(不管服从什么分布,只要均值和方差存在)的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自 X X X的一个样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有 E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 / n , E ( S 2 ) = σ 2 E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n, \quad E(S^2)=\sigma^2 E(X)=μ,D(X)=σ2/n,E(S2)=σ2

  2. 正态分布线性可加性: 若 X i ∼ N ( μ i , σ i 2 ) , i = 1 , 2 , ⋯   , n X_i\sim N(\mu_i,\sigma_i^2),i=1,2,\cdots,n XiN(μi,σi2),i=1,2,,n,且他们相互独立,则他们的线性组合: C 1 X 1 + C 2 X 2 + ⋯ + C n X n C_1X_1+C_2X_2+\cdots+C_nX_n C1X1+C2X2++CnXn,( C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn是不全为 0 0 0的常数)仍然服从正态分布,且有 C 1 X 1 + C 2 X 2 + ⋯ + C n X n ∼ N ( ∑ i = 1 n C i μ i , ∑ i = 1 n C i 2 σ i 2 ) C_1X_1+C_2X_2+\cdots+C_nX_n\sim N(\sum\limits_{i=1}^nC_i\mu_i,\sum\limits_{i=1}^nC_i^2\sigma_i^2) C1X1+C2X2++CnXnN(i=1nCiμi,i=1nCi2σi2)

  3. n n n维正态随机变量重要性质

    1 0 1^0\quad 10 n n n维正态随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)的每一个分量 X i , i = 1 , 2 , ⋯   , n X_i,i=1,2,\cdots,n Xi,i=1,2,,n都是正态随机变量,反之,若 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn都是正态随机变量,且相互独立,则 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) n n n维正态随机变量

    2 0 2^0\quad 20 n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布的充要条件是 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的任意线性组合 l 1 X 1 + l 2 X 2 + ⋯ + l n X n l_1X_1+l_2X_2+\cdots+l_nX_n l1X1+l2X2++lnXn 服从一维正态分布(其中 l 1 , l 2 , ⋯   , l n l_1,l_2,\cdots,l_n l1,l2,,ln不全为零)

    3 0 3^0\quad 30 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布,设 Y 1 , Y 2 , ⋯   , Y k Y_1,Y_2,\cdots,Y_k Y1,Y2,,Yk X j ( j = 1 , 2 , ⋯   , n ) X_j(j=1,2,\cdots,n) Xj(j=1,2,,n)的线性函数,则 ( Y 1 , Y 2 , ⋯   , Y k ) (Y_1,Y_2,\cdots,Y_k) (Y1,Y2,,Yk)也服从多维正态分布,这一性质称为正态变量的线性变换不变性

    4 0 4^0\quad 40 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布,则” X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立”与” X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn两两不相关“是等价的。

定理一

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ \overline{X} X是样本均值,则有 X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

    证明很简单,由引言1可知, E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 / n E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n E(X)=μ,D(X)=σ2/n

    X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum\limits_{i=1}^nX_i X=n1i=1nXi X i X_i Xi 服从正态分布,则根据引理2可知, X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

定理二

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有

    1 0 ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) 1^0\quad \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) 10σ2(n1)S2χ2(n1)

    2 0 X ‾ 2^0\quad \overline{X} 20X S 2 S^2 S2相互独立

    证明:

    ( n − 1 ) S 2 σ 2 = ( n − 1 ) σ 2 × 1 ( n − 1 ) ∑ i = 1 n ( X i − X ‾ ) 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 2 = ∑ i = 1 n [ ( X i − μ ) − ( X ‾ − μ ) ] 2 σ 2 = ∑ i = 1 n ( X i − μ σ − X ‾ − μ σ ) 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \frac{(n-1)}{\sigma^2}\times \frac{1}{(n-1)}\sum\limits_{i=1}^n(X_i-\overline{X})^2 \\&= \frac{\sum\limits_{i=1}^n(X_i-\overline{X})^2}{\sigma^2}\\&=\frac{\sum\limits_{i=1}^n[(X_i-\mu)-(\overline{X}-\mu)]^2}{\sigma^2}\\&= \sum\limits_{i=1}^n\bigg(\frac{X_i-\mu}{\sigma}-\frac{\overline{X}-\mu}{\sigma}\bigg)^2\end{aligned} σ2(n1)S2=σ2(n1)×(n1)1i=1n(XiX)2=σ2i=1n(XiX)2=σ2i=1n[(Xiμ)(Xμ)]2=i=1n(σXiμσXμ)2

    为了方便,我们令 Z i = X i − μ σ Z_i=\frac{X_i-\mu}{\sigma} Zi=σXiμ ,由于 X i ∼ N ( μ , σ 2 ) X_i\sim N(\mu,\sigma^2) XiN(μ,σ2) ,因此 Z i ∼ N ( 0 , 1 ) Z_i\sim N(0,1) ZiN(0,1)

    Z ‾ = X ‾ − μ σ \overline{Z} = \frac{\overline{X}-\mu}{\sigma} Z=σXμ ,则

    ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( Z i − Z ‾ ) 2 = ∑ i = 1 n ( Z i 2 − 2 Z i Z ‾ + Z ‾ 2 ) = ∑ i = 1 n Z i 2 − 2 Z ‾ ∑ i = 1 n Z i + ∑ i = 1 n Z ‾ 2 = ∑ i = 1 n Z i 2 − 2 n Z ‾ 2 + n Z ‾ 2 = ∑ i = 1 n Z i 2 − n Z ‾ 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \sum\limits_{i=1}^n(Z_i-\overline{Z})^2 \\&= \sum\limits_{i=1}^n(Z_i^2-2Z_i\overline{Z}+\overline{Z}^2) \\&= \sum\limits_{i=1}^nZ_i^2-2\overline{Z}\sum\limits_{i=1}^nZ_i+\sum\limits_{i=1}^n\overline{Z}^2 \\&= \sum\limits_{i=1}^nZ_i^2-2n\overline{Z}^2+n\overline{Z}^2\\&=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \end{aligned} σ2(n1)S2=i=1n(ZiZ)2=i=1n(Zi22ZiZ+Z2)=i=1nZi22Zi=1nZi+i=1nZ2=i=1nZi22nZ2+nZ2=i=1nZi2nZ2

    取一个 n n n阶正交矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),其第一行元素均为 1 / n 1/\sqrt{n} 1/n

    A = [ 1 / n 1 / n ⋯ 1 / n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] A = \begin{bmatrix}1/\sqrt{n} & 1/\sqrt{n} & \cdots & 1/\sqrt{n} \\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\end{bmatrix} A=1/n a21an11/n a22an21/n a2nann

    A A A做正交变换 Y = A Z Y=AZ Y=AZ ,有

    Y = [ Y 1 Y 2 ⋮ Y n ] , Z = [ Z 1 Z 2 ⋮ Z n ] Y = \begin{bmatrix}Y_1 \\Y_2\\ \vdots \\Y_n \end{bmatrix},Z = \begin{bmatrix}Z_1 \\Z_2\\ \vdots \\Z_n \end{bmatrix} Y=Y1Y2Yn,Z=Z1Z2Zn

    由于 Y i = ∑ j = 1 n a i j Z j , i = 1 , 2 , ⋯   , n Y_i=\sum\limits_{j=1}^na_{ij}Z_j,\quad i=1,2,\cdots ,n Yi=j=1naijZj,i=1,2,,n ,因此 Y i Y_i Yi仍服从正态分布,由 Z i ∼ N ( 0 , 1 ) Z_i \sim N(0,1) ZiN(0,1) 可知

    E ( Y i ) = E ( ∑ j = 1 n a i j Z j ) = ∑ j = 1 n a i j E ( Z j ) = 0 E(Y_i) = E(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}E(Z_j) = 0 E(Yi)=E(j=1naijZj)=j=1naijE(Zj)=0

    D ( Y i ) = D ( ∑ j = 1 n a i j Z j ) = ∑ j = 1 n a i j 2 D ( Z j ) = ∑ j = 1 n a i j 2 = 1 D(Y_i) = D(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}^2D(Z_j) = \sum\limits_{j=1}^na_{ij}^2=1 D(Yi)=D(j=1naijZj)=j=1naij2D(Zj)=j=1naij2=1

    又由 C o v ( Z i , Z j ) = δ i j = { 0 , i ≠ j 1 , i = j , i , j = 1 , 2 , ⋯   , n Cov(Z_i,Z_j) = \delta_{ij}=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases} \quad ,i,j=1,2,\cdots,n Cov(Zi,Zj)=δij={0,i=j1,i=j,i,j=1,2,,n

    C o v ( Y i , Y k ) = C o v ( ∑ j = 1 n a i j Z j , ∑ l = 1 n a k l Z l ) = ∑ j = 1 n ∑ l = 1 n a i j a k l C o v ( Z j , Z l ) = ∑ j = 1 n a i j a k j = { 0 , i ≠ j 1 , i = j ( 正 交 矩 阵 性 质 , 各 行 均 是 单 位 向 量 且 两 两 正 交 ) \begin{aligned}Cov(Y_i,Y_k) &= Cov(\sum\limits_{j=1}^na_{ij}Z_j,\sum\limits_{l=1}^na_{kl}Z_l)\\&=\sum\limits_{j=1}^n\sum\limits_{l=1}^n a_{ij}a_{kl}Cov(Z_j,Z_l) \\&=\sum\limits_{j=1}^na_{ij}a_{kj} \\&=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases}(正交矩阵性质,各行均是单位向量且两两正交)\end{aligned} Cov(Yi,Yk)=Cov(j=1naijZj,l=1naklZl)=j=1nl=1naijaklCov(Zj,Zl)=j=1naijakj={0,i=j1,i=j()

    由此可知 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn 两两互不相关。又由于 n n n维随机变量 ( Y 1 , Y 2 , ⋯   , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)是由 n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,Xn)经线性变换得到,因此 ( Y 1 , Y 2 , ⋯   , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)也是 n n n维正态随机变量,由引理3性质4可知, Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn两两互不相关也即是 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn互相独立。前面已经计算出 E ( Y i ) = 0 , D ( Y i ) = 1 E(Y_i)=0,D(Y_i)=1 E(Yi)=0,D(Yi)=1 因此 Y i ∼ N ( 0 , 1 ) , i = 1 , 2 , ⋯   , n . Y_i\sim N(0,1),i=1,2,\cdots,n. YiN(0,1),i=1,2,,n.

    Y 1 = ∑ j = 1 n a 1 j Z j = ∑ j = 1 n 1 n Z j = 1 n ∗ n Z ‾ = n Z ‾ \begin{aligned}Y_1&=\sum\limits_{j=1}^na_{1j}Z_j \\&= \sum\limits_{j=1}^n\frac{1}{\sqrt{n}}Z_j\\&=\frac{1}{\sqrt{n}}*n\overline{Z}\\&=\sqrt{n}\overline{Z}\end{aligned} Y1=j=1na1jZj=j=1nn 1Zj=n 1nZ=n Z

    ∑ i = 1 n Y i 2 = Y T Y = ( A Z ) T ( A Z ) = Z T A T A Z = Z T Z = ∑ i = 1 n Z i 2 \begin{aligned}\sum\limits_{i=1}^nY_i^2&=Y^TY=(AZ)^T(AZ)\\&=Z^TA^TAZ = Z^TZ = \sum\limits_{i=1}^nZ_i^2\end{aligned} i=1nYi2=YTY=(AZ)T(AZ)=ZTATAZ=ZTZ=i=1nZi2

    此时有

    ( n − 1 ) S 2 σ 2 = ∑ i = 1 n Z i 2 − n Z ‾ 2 = ∑ i = 1 n Y i 2 − Y 1 2 = ∑ i = 2 n Y i 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \\&=\sum\limits_{i=1}^nY_i^2-Y_1^2\\&=\sum\limits_{i=2}^nY_i^2\end{aligned} σ2(n1)S2=i=1nZi2nZ2=i=1nYi2Y12=i=2nYi2

    由于 Y 2 , Y 3 , ⋯   , Y n Y_2,Y_3,\cdots,Y_n Y2,Y3,,Yn相互独立,且 Y i ∼ N ( 0 , 1 ) Y_i\sim N(0,1) YiN(0,1) ,因此 ( n − 1 ) S 2 σ 2 = ∑ i = 2 n Y i 2 ∼ χ 2 ( n − 1 ) . \frac{(n-1)S^2}{\sigma^2}=\sum\limits_{i=2}^nY_i^2\sim\chi^2(n-1). σ2(n1)S2=i=2nYi2χ2(n1).

    其次, X ‾ = σ Z ‾ + μ = σ Y 1 n + μ \overline{X} = \sigma\overline{Z}+\mu = \frac{\sigma Y_1}{\sqrt{n}}+\mu X=σZ+μ=n σY1+μ 仅跟 Y 1 Y_1 Y1有关,而 S 2 = σ 2 n − 1 ∑ i = 2 n Y i 2 S^2=\frac{\sigma^2}{n-1}\sum\limits_{i=2}^nY_i^2 S2=n1σ2i=2nYi2 仅依赖于 Y 2 , Y 3 , ⋯   , Y n Y_2,Y_3,\cdots,Y_n Y2,Y3,,Yn ,又因为 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn相互独立,因此有 X ‾ \overline{X} X S 2 S^2 S2相互独立

定理三

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有 X ‾ − μ S / n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/n Xμt(n1)

    证明:

    由定理一可知, X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

    进行标准化之后有 X ‾ − μ σ / n ∼ N ( 0 , 1 ) . \frac{\overline{X}-\mu}{\sigma /\sqrt{n}}\sim N(0,1). σ/n XμN(0,1).

    由定理二可知, ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)

    根据 t t t分布定义有 X ‾ − μ σ / n ( n − 1 ) S 2 σ 2 ( n − 1 ) = X ‾ − μ S / n ∼ t ( n − 1 ) \begin{aligned} \frac{\frac{\overline{X}-\mu}{\sigma/ \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} = \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)\end{aligned} σ2(n1)(n1)S2 σ/n Xμ=S/n Xμt(n1)

    证明完毕

定理四

  • X 1 , X 2 , ⋯   , X n 1 X_1,X_2,\cdots,X_{n_1} X1,X2,,Xn1 Y 1 , Y 2 , ⋯   , Y n 1 Y_1,Y_2,\cdots,Y_{n_1} Y1,Y2,,Yn1是来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)的样本,且这两个样本 相互独立. 设 X ‾ = 1 n 1 ∑ i = 1 n 1 X i , Y ‾ = 1 n 2 ∑ i = 1 n 2 Y i \overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}Y_i X=n11i=1n1Xi,Y=n21i=1n2Yi 分别是这两个样本的样本均值; S 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ‾ ) 2 , S 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ‾ ) 2 S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2 S12=n111i=1n1(XiX)2,S22=n211i=1n2(YiY)2分别是两个样本的样本方差,则有

    1 0 S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) 1^0\quad \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) 10σ12/σ22S12/S22F(n11,n21)

    2 0 2^0\quad 20 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2时, ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) Swn11+n21 (XY)(μ1μ2)t(n1+n22)

    其中 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 , S w = S w 2 S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}, S_w=\sqrt{S_w^2} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2

    证明:

    1 0 1^0 \quad 10 由定理二可知 ( n 1 − 1 ) S 1 2 σ 1 2 ∼ χ 2 ( n 1 − 1 ) ( 1 ) ( n 2 − 1 ) S 2 2 σ 2 2 ∼ χ 2 ( n 2 − 1 ) ( 2 ) \frac{(n_1-1)S_1^2}{\sigma_1^2}\sim \chi^2(n_1-1) \quad(1) \\\frac{(n_2-1)S_2^2}{\sigma_2^2}\sim \chi^2(n_2-1)\quad(2) σ12(n11)S12χ2(n11)(1)σ22(n21)S22χ2(n21)(2)

    此时有 ( n 1 − 1 ) S 1 2 ( n 1 − 1 ) σ 1 2 / ( n 2 − 1 ) S 2 2 ( n 2 − 1 ) σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2}\bigg/\frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1,n_2-1) (n11)σ12(n11)S12/(n21)σ22(n21)S22F(n11,n21)

    S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) σ12/σ22S12/S22F(n11,n21)

    2 0 2^0\quad 20 由式 ( 1 ) (1) (1) ( 2 ) (2) (2),以及 χ 2 \chi^2 χ2分布的可加性可知 ( n 1 − 1 ) S 1 2 σ 1 2 + ( n 2 − 1 ) S 2 2 σ 2 2 服 从 χ 2 ( n 1 + n 2 − 2 ) \frac{(n_1-1)S_1^2}{\sigma_1^2}+\frac{(n_2-1)S_2^2}{\sigma_2^2} 服从\chi^2(n_1+n_2-2) σ12(n11)S12+σ22(n21)S22χ2(n1+n22)

    σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2可知, ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 σ 2 ∼ χ 2 ( n 1 + n 2 − 2 ) ( 3 ) \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)\quad (3) σ2(n11)S12+(n21)S22χ2(n1+n22)(3)

    由定理一可知 X ‾ ∼ N ( μ 1 , σ 2 / n ) , Y ‾ ∼ N ( μ 2 , σ 2 / n ) . \overline{X}\sim N(\mu_1,\sigma^2/n),\overline{Y}\sim N(\mu_2,\sigma^2/n). XN(μ1,σ2/n),YN(μ2,σ2/n).

    因此 X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 2 / n 1 + σ 2 / n 2 ) \overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\sigma^2/n_1+\sigma^2/n_2) XYN(μ1μ2,σ2/n1+σ2/n2) ,对其进行标准化有

    ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 2 / n 1 + σ 2 / n 2 ∼ N ( 0 , 1 ) ( 4 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}} \sim N(0,1)\quad (4) σ2/n1+σ2/n2 (XY)(μ1μ2)N(0,1)(4)

    由式 ( 3 ) 、 ( 4 ) (3)、(4) (3)(4)可知 ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 2 / n 1 + σ 2 / n 2 / ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 σ 2 ( n 1 + n 2 − 2 ) ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}}\bigg/\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2(n_1+n_2-2)}} \sim t(n_1+n_2-2) σ2/n1+σ2/n2 (XY)(μ1μ2)/σ2(n1+n22)(n11)S12+(n21)S22 t(n1+n22)

    ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) Swn11+n21 (XY)(μ1μ2)t(n1+n22)

    证明完毕

你可能感兴趣的:(概率论与数理统计,统计学,概率论,机器学习)