通过解读yolov5_gpu_optimization学习如何使用onnx_surgon

onnx实战一: 解析yolov5 gpu的onnx优化案例:
这是一个英伟达的仓库, 这个仓库的做法就是通过用gs对onnx进行修改减少算子然后最后使用TensorRT插件实现算子, 左边是优化过的, 右边是原版的。 通过这个案例理解原版的onnx的导出流程然后我们看英伟达是怎么拿gs来优化这个onnx

通过解读yolov5_gpu_optimization学习如何使用onnx_surgon_第1张图片

原版的export_onnx函数

先看torch.onnx.export函数的参数解释:

  1. model: 要导出的PyTorch模型, 在工程中这里输入的是训练好的pt文件

  2. im: 这里对应torch.onnx.export的args, 这个是用作模型输入的示例张量。这帮助ONNX确定输入的形状和类型。

  3. f: 输出ONNX模型的文件名或文件对象, 用来指定导出模型的路径和文件名。

  4. verbose (默认为 False): 如果设置为 True,则会打印出模型导出时的详细日志。

  5. opset_version: 导出的ONNX模型的操作集版本。不同的版本可能支持不同的操作。

  6. training:

    • torch.onnx.TrainingMode.TRAINING: 表示模型处于训练模式。
    • torch.onnx.TrainingMode.EVAL: 表示模型处于评估模式。
  7. do_constant_folding (默认为 True): 当设置为 True,导出过程中会尝试简化模型,将常量子图折叠为一个常量节点。

  8. input_names: 为模型的输入提供名称, 参数规定是数组

  9. output_names: 为模型的输出提供名称, 参数规定是数组

  10. dynamic_axes: 为模型的输入/输出定义动态轴。对于那些维度在推理时可能会发生变化的情况(例如,批处理大小),此参数允许指定哪些轴是动态的。这里images是输入, 本来是1x3x640x640, 这里通过指定把0, 2, 3维度变成了动态轴的输入, 第二个维度是3这个还是固定的。如果使用动态, 可以输入任意数量和任意大小的图片而不是规定的单张640x640

  • 'images': 对应的张量名称。
    • 0: 'batch': 表示第0个维度(即批处理维度)是动态的,并命名为’batch’。
    • 2: 'height': 表示第2个维度(即图像的高度)是动态的。
    • 3: 'width': 表示第3个维度(即图像的宽度)是动态的。
  • 'output': 对应的张量名称。
    • 0: 'batch': 表示第0个维度(即批处理维度)是动态的。
    • 1: 'anchors': 表示第1个维度是动态的。
  1. dynamic (没有在给定的函数调用中明确给出,但可以从上下文推断):
  • True: 如果你想让某些轴动态,你可以设置此参数为True
  • False: 表示不使用动态轴。

导出了onnx之后开始做onnxsim

  1. model_onnx, check = onnxsim.simplify(...):使用onnxsim的simplify方法简化模型。它返回简化后的onnx模型和一个布尔值check,表示简化是否成功。

  2. 在对动态输入的onnx导出的时候, dynamic_input_shape=dynamic是不够的,还要把输入给他,让onnxsim更加谨慎的优化onnx, 确保满足我们给他的输出,所以这里多了一个input_shapes={'images': list(im.shape)} if dynamic else None

def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(
            model,
            im,
            f,
            verbose=False,
            opset_version=opset,
            training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
            do_constant_folding=not train,
            input_names=['images'],
            output_names=['output'],
            dynamic_axes={
                'images': {
                    0: 'batch',
                    2: 'height',
                    3: 'width'},  # shape(1,3,640,640)
                'output': {
                    0: 'batch',
                    1: 'anchors'}  # shape(1,25200,85)
            } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model

        # Metadata
        d = {'stride': int(max(model.stride)), 'names': model.names}
        for k, v in d.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)
        onnx.save(model_onnx, f)

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(model_onnx,
                                                     dynamic_input_shape=dynamic,
                                                     input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return f
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')

更改过的export_onnx函数

  1. 首先是把onnx的输出由一个改成了3个, 然后指定动态输出, 因为有多个输出,全部都把他们的batch, width, height指定为动态的,满足不同的输入输出。 不过这边的问题是看起来是只改了最后的输出,但是前面在yolo.py的地方已经把sigmoid后面的计算都干掉了, 因为后面的计算映射了一堆的算子导致了在计算图太冗余

通过解读yolov5_gpu_optimization学习如何使用onnx_surgon_第2张图片
这一坨全部不要了就保留sigmoid就可以了,然后就是直接硬编码t就是int32

diff --git a/models/yolo.py b/models/yolo.py
index 02660e6..c810745 100644
--- a/models/yolo.py
+++ b/models/yolo.py
@@ -55,29 +55,15 @@ class Detect(nn.Module):
         z = []  # inference output
         for i in range(self.nl):
             x[i] = self.m[i](x[i])  # conv
-            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
-            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
-            if not self.training:  # inference
-                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
-                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
-
-                y = x[i].sigmoid()
-                if self.inplace:
-                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy
-                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
-                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
-                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0
-                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
-                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
-                    y = torch.cat((xy, wh, conf), 4)
-                z.append(y.view(bs, -1, self.no))
-
-        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
+            y = x[i].sigmoid()
+            z.append(y)
+        return z
 
     def _make_grid(self, nx=20, ny=20, i=0):
         d = self.anchors[i].device
-        t = self.anchors[i].dtype
+        # t = self.anchors[i].dtype
+        # TODO(tylerz) hard-code data type to int
+        t = torch.int32
         shape = 1, self.na, ny, nx, 2  # grid shape
         y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
         if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
-- 
2.36.0
  1. onnxsim这里跟之前是一样的, 也是直接onnxsim, 如果动态的要给输出给onnxsim然后让它更加的谨慎,满足需求

  2. 这后面的重点是增加了用onnx-surgon来更改onnx, 先把整个onnx导入进来,然后使用然后用Variable做模型的输出, 这里做四个模型输出, 分别是DecodeNumDetection, DecodeDetectionBoxes, DecodeDetectionScores, DecodeDetectionClasses

  3. 然后设置一个attrs, gs设置的attrs使用字典的格式弄的。这里设置max_stride, num_classes, anchors, prenms_score_threshold四个属性,这些属性的操作会在TensorRT中实现的

  4. decode_plugin是中间的节点,这个节点上面是inputs, 下面是四个不同的decodes, 这里就是把这个nodes做出来了

  5. 然后在整体的网络上添加这个节点,然后再把输出改成这个节点的输出保持一致,在计算图中把其他的节点claenup()清洁掉, 最后导出

def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    # try:
    check_requirements(('onnx',))
    import onnx

    LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
    f = file.with_suffix('.onnx')
    print(train)
    torch.onnx.export(
        model,
        im,
        f,
        verbose=False,
        opset_version=opset,
        training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
        do_constant_folding=not train,
        input_names=['images'],
        output_names=['p3', 'p4', 'p5'],
        dynamic_axes={
            'images': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,3,640,640)
            'p3': {
                0: 'batch',
                2: 'height',
                3: 'width'},  # shape(1,25200,4)
            'p4': {
                0: 'batch',
                2: 'height',
                3: 'width'},
            'p5': {
                0: 'batch',
                2: 'height',
                3: 'width'}
        } if dynamic else None)

    # Checks
    model_onnx = onnx.load(f)  # load onnx model
    onnx.checker.check_model(model_onnx)  # check onnx model
    
    # Simplify
    if simplify:
        # try:
        check_requirements(('onnx-simplifier',))
        import onnxsim

        LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
        model_onnx, check = onnxsim.simplify(model_onnx,
                                                dynamic_input_shape=dynamic,
                                                input_shapes={'images': list(im.shape)} if dynamic else None)
        assert check, 'assert check failed'
        onnx.save(model_onnx, f)
        # except Exception as e:
        #     LOGGER.info(f'{prefix} simplifier failure: {e}')

    # add yolov5_decoding:
    import onnx_graphsurgeon as onnx_gs
    import numpy as np
    yolo_graph = onnx_gs.import_onnx(model_onnx)
    p3 = yolo_graph.outputs[0]
    p4 = yolo_graph.outputs[1]
    p5 = yolo_graph.outputs[2]
    decode_out_0 = onnx_gs.Variable(
        "DecodeNumDetection",
        dtype=np.int32
    )
    decode_out_1 = onnx_gs.Variable(
        "DecodeDetectionBoxes",
        dtype=np.float32
    )
    decode_out_2 = onnx_gs.Variable(
        "DecodeDetectionScores",
        dtype=np.float32
    )
    decode_out_3 = onnx_gs.Variable(
        "DecodeDetectionClasses",
        dtype=np.int32
    )

    decode_attrs = dict()

    decode_attrs["max_stride"] = int(max(model.stride))
    decode_attrs["num_classes"] = model.model[-1].nc
    decode_attrs["anchors"] = [float(v) for v in [10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]]
    decode_attrs["prenms_score_threshold"] = 0.25

    decode_plugin = onnx_gs.Node(
        op="YoloLayer_TRT",
        name="YoloLayer",
        inputs=[p3, p4, p5],
        outputs=[decode_out_0, decode_out_1, decode_out_2, decode_out_3],
        attrs=decode_attrs
    )

    yolo_graph.nodes.append(decode_plugin)
    yolo_graph.outputs = decode_plugin.outputs
    yolo_graph.cleanup().toposort()
    model_onnx = onnx_gs.export_onnx(yolo_graph)

    d = {'stride': int(max(model.stride)), 'names': model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)

    onnx.save(model_onnx, f)
    LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    return f
    # except Exception as e:
    #     LOGGER.info(f'{prefix} export failure: {e}')

你可能感兴趣的:(YOLO,学习)