源码安装之前需要安转一些其他的库,可参考博客:安装电脑里没有的依赖
下载PCL1.9.1的源码:下载链接,然后解压到/home目录下,并更改解压后的文件夹名为pcl-1.9.1
。进入该文件目录下,新建build
文件夹。
新建终端并切换到刚刚新建的build
目录下面,执行命令 cmake-gui
.
where is the source code选择解压后的pcl1.9.1
的路径,where to build the binaries选择新建的build
路径。然后点击configure选项。
选中BUILD_sruface_on_nurbs选项,再次点击configure,选择USE_UMFPACK选项。选择CMAKE_INSTALL_PREFIX的路径为/usr/local/pcl-1.9。(选择路径前需要先在/usr/local/目录下新建pcl-1.9文件夹)。 最后点击generate选项。
依然在build目录下新建终端,执行指令make -j2
(j后面的数字可以指定,越大程序编译的越快,不过电脑也容易卡死,最大为CPU的核数)。完成之后,执行指令sudo make install
将安装到刚刚在cmake-gui中指定的路径/usr/local/pcl-1.9
.
/usr/local/pcl-1.9
是为了后期安装其他版本,而且卸载的时候也方便,以后如果安装其他开源库也可这样设置路径,比如/usr/local/opencv-3.4.bashrc
文件后面添加如下两行,指定PCL库的路径.export PKG_CONFIG_PATH=/usr/local/pcl-1.9/lib/pkgconfig:$PKG_CONFIG_PATH
export LD_LIBRARY_PATH=/usr/local/pcl-1.9/lib:$LD_LIBRARY_PATH
demo
文件夹,然后新建CMakeLists.txt
和bspline_fitting.cpp
文件,其中bspline_fitting.cpp写曲面重建等程序以及对应的头文件,CMakeLists.txt文件的内容如下,配置完文件之后用QT打开CMakeLists.txt,然后在QT中做后续开发即可.cmake_minimum_required(VERSION 2.4.6)
project(bspline_fitting)
set(PCL_DIR "/usr/local/pcl-1.9/share/pcl-1.9")
find_package(PCL 1.9 REQUIRED)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
add_executable (bspline_fitting bspline_fitting.cpp)
target_link_libraries (bspline_fitting ${PCL_LIBRARIES})
cmake_minimum_required(VERSION 2.4.8)
project(test)
#指定PCL库的路径
set(PCL_DIR "/usr/local/pcl-1.9/share/pcl-1.9")
find_package(PCL 1.9 REQUIRED COMPONENTS)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
#ROS相关,不要添加pcl_ros等ROS中自带的PCL功能包,使用PCL1.9即可
find_package(catkin REQUIRED COMPONENTS roscpp)
catkin_package()
include_directories(include ${catkin_INCLUDE_DIRS})
#生成可执行文件的依赖
add_executable(app src/app.cpp)
add_dependencies(app ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
#后面的${PCL_LIBRARIES}一定要加,否则会出现函数未定义的错误,容易忘记.
target_link_libraries(app ${catkin_LIBRARIES} ${PCL_LIBRARIES})
.pcd
文件,并将.pcd文件完整路径
这个参数
输入给主函数main
.#include
#include
#include
#include
#include
#include
#include
#include
using namespace pcl::console;
typedef pcl::PointXYZ Point;
void
PointCloud2Vector3d (pcl::PointCloud<Point>::Ptr cloud, pcl::on_nurbs::vector_vec3d &data);
void
visualizeCurve (ON_NurbsCurve &curve,
ON_NurbsSurface &surface,
pcl::visualization::PCLVisualizer &viewer);
int
main (int argc, char *argv[])
{
std::string pcd_file, file_3dm;
if (argc < 2)
{
printf ("\nUsage: pcl_example_nurbs_fitting_surface pcd-in-file -o 3 -rn 4 -in 10 -mr 128 -td 1\n\n" );
exit (0);
}
pcd_file = argv[1];
//file_3dm = argv[2];
pcl::visualization::PCLVisualizer viewer ("点云库PCL学习教程第二版-B样条曲面拟合点云数据");
viewer.setBackgroundColor(255,255,255);
viewer.setSize (800, 600);
// ############################################################################
// load point cloud
printf (" loading %s\n", pcd_file.c_str ());
pcl::PointCloud<Point>::Ptr cloud (new pcl::PointCloud<Point>);
pcl::PCLPointCloud2 cloud2;
pcl::on_nurbs::NurbsDataSurface data;
if (pcl::io::loadPCDFile (pcd_file, cloud2) == -1)
throw std::runtime_error (" PCD file not found.");
fromPCLPointCloud2 (cloud2, *cloud);
PointCloud2Vector3d (cloud, data.interior);
pcl::visualization::PointCloudColorHandlerCustom<Point> handler (cloud, 0, 255, 0);
viewer.addPointCloud<Point> (cloud, handler, "cloud_cylinder");
printf (" %lu points in data set\n", cloud->size ());
// ############################################################################
// fit B-spline surface
// parameters
unsigned order (3);
unsigned refinement (4);
unsigned iterations (10);
unsigned mesh_resolution (128);
bool two_dim=true;
parse_argument (argc, argv, "-o", order);
parse_argument (argc, argv, "-rn", refinement);
parse_argument (argc, argv, "-in", iterations);
parse_argument (argc, argv, "-mr", mesh_resolution);
parse_argument (argc, argv, "-td", two_dim);
pcl::on_nurbs::FittingSurface::Parameter params;
params.interior_smoothness = 0.2;
params.interior_weight = 1.0;
params.boundary_smoothness = 0.2;
params.boundary_weight = 0.0;
// initialize
printf (" surface fitting ...\n");
ON_NurbsSurface nurbs = pcl::on_nurbs::FittingSurface::initNurbsPCABoundingBox (order, &data);
pcl::on_nurbs::FittingSurface fit (&data, nurbs);
// fit.setQuiet (false); // enable/disable debug output
// mesh for visualization
pcl::PolygonMesh mesh;
pcl::PointCloud<pcl::PointXYZ>::Ptr mesh_cloud (new pcl::PointCloud<pcl::PointXYZ>);
std::vector<pcl::Vertices> mesh_vertices;
std::string mesh_id = "mesh_nurbs";
pcl::on_nurbs::Triangulation::convertSurface2PolygonMesh (fit.m_nurbs, mesh, mesh_resolution);
viewer.addPolygonMesh (mesh, mesh_id);
std::cout<<"Before refine"<<endl;
viewer.spinOnce (3000);
// surface refinement
for (unsigned i = 0; i < refinement; i++)
{
fit.refine (0);
if(two_dim)fit.refine (1);
fit.assemble (params);
fit.solve ();
pcl::on_nurbs::Triangulation::convertSurface2Vertices (fit.m_nurbs, mesh_cloud, mesh_vertices, mesh_resolution);
viewer.updatePolygonMesh<pcl::PointXYZ> (mesh_cloud, mesh_vertices, mesh_id);
viewer.spinOnce (3000);
std::cout<<"refine: "<<i<<endl;
}
// surface fitting with final refinement level
for (unsigned i = 0; i < iterations; i++)
{
fit.assemble (params);
fit.solve ();
pcl::on_nurbs::Triangulation::convertSurface2Vertices (fit.m_nurbs, mesh_cloud, mesh_vertices, mesh_resolution);
viewer.updatePolygonMesh<pcl::PointXYZ> (mesh_cloud, mesh_vertices, mesh_id);
viewer.spinOnce (3000);
std::cout<<"iterations: "<<i<<endl;
}
// ############################################################################
// fit B-spline curve
// parameters
pcl::on_nurbs::FittingCurve2dAPDM::FitParameter curve_params;
curve_params.addCPsAccuracy = 5e-2;
curve_params.addCPsIteration = 3;
curve_params.maxCPs = 200;
curve_params.accuracy = 1e-3;
curve_params.iterations = 100;
curve_params.param.closest_point_resolution = 0;
curve_params.param.closest_point_weight = 1.0;
curve_params.param.closest_point_sigma2 = 0.1;
curve_params.param.interior_sigma2 = 0.00001;
curve_params.param.smooth_concavity = 1.0;
curve_params.param.smoothness = 1.0;
// initialisation (circular)
printf (" curve fitting ...\n");
pcl::on_nurbs::NurbsDataCurve2d curve_data;
curve_data.interior = data.interior_param;
curve_data.interior_weight_function.push_back (true);
ON_NurbsCurve curve_nurbs = pcl::on_nurbs::FittingCurve2dAPDM::initNurbsCurve2D (order, curve_data.interior);
// curve fitting
pcl::on_nurbs::FittingCurve2dASDM curve_fit (&curve_data, curve_nurbs);
// curve_fit.setQuiet (false); // enable/disable debug output
curve_fit.fitting (curve_params);
visualizeCurve (curve_fit.m_nurbs, fit.m_nurbs, viewer);
// ############################################################################
// triangulation of trimmed surface
printf (" triangulate trimmed surface ...\n");
viewer.removePolygonMesh (mesh_id);
pcl::on_nurbs::Triangulation::convertTrimmedSurface2PolygonMesh (fit.m_nurbs, curve_fit.m_nurbs, mesh,
mesh_resolution);
viewer.addPolygonMesh (mesh, mesh_id);
// save trimmed B-spline surface
/*if ( fit.m_nurbs.IsValid() )
{
ONX_Model model;
ONX_Model_Object& surf = model.m_object_table.AppendNew();
surf.m_object = new ON_NurbsSurface(fit.m_nurbs);
surf.m_bDeleteObject = true;
surf.m_attributes.m_layer_index = 1;
surf.m_attributes.m_name = "surface";
ONX_Model_Object& curv = model.m_object_table.AppendNew();
curv.m_object = new ON_NurbsCurve(curve_fit.m_nurbs);
curv.m_bDeleteObject = true;
curv.m_attributes.m_layer_index = 2;
curv.m_attributes.m_name = "trimming curve";
model.Write(file_3dm.c_str());
printf(" model saved: %s\n", file_3dm.c_str());
}*/
printf (" ... done.\n");
viewer.spin ();
return 0;
}
void
PointCloud2Vector3d (pcl::PointCloud<Point>::Ptr cloud, pcl::on_nurbs::vector_vec3d &data)
{
for (unsigned i = 0; i < cloud->size (); i++)
{
Point &p = cloud->at (i);
if (!pcl_isnan (p.x) && !pcl_isnan (p.y) && !pcl_isnan (p.z))
data.push_back (Eigen::Vector3d (p.x, p.y, p.z));
}
}
void
visualizeCurve (ON_NurbsCurve &curve, ON_NurbsSurface &surface, pcl::visualization::PCLVisualizer &viewer)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr curve_cloud (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::on_nurbs::Triangulation::convertCurve2PointCloud (curve, surface, curve_cloud, 4);
for (std::size_t i = 0; i < curve_cloud->size () - 1; i++)
{
pcl::PointXYZRGB &p1 = curve_cloud->at (i);
pcl::PointXYZRGB &p2 = curve_cloud->at (i + 1);
std::ostringstream os;
os << "line" << i;
viewer.removeShape (os.str ());
viewer.addLine<pcl::PointXYZRGB> (p1, p2, 1.0, 0.0, 0.0, os.str ());
}
pcl::PointCloud<pcl::PointXYZRGB>::Ptr curve_cps (new pcl::PointCloud<pcl::PointXYZRGB>);
for (int i = 0; i < curve.CVCount (); i++)
{
ON_3dPoint p1;
curve.GetCV (i, p1);
double pnt[3];
surface.Evaluate (p1.x, p1.y, 0, 3, pnt);
pcl::PointXYZRGB p2;
p2.x = float (pnt[0]);
p2.y = float (pnt[1]);
p2.z = float (pnt[2]);
p2.r = 255;
p2.g = 0;
p2.b = 0;
curve_cps->push_back (p2);
}
viewer.removePointCloud ("cloud_cps");
viewer.addPointCloud (curve_cps, "cloud_cps");
}