fNIRS技术入门文章

本文首发在个人博客上(7988888.xyz),此文章中所有链接均通过博客进行访问。(ps:可快速访问国内镜像网址cn.7988888.xyz

前序

在很多时候,我经常收到很多来信,让我推荐一些关于近红外入门的书籍资料,但很不幸的是,目前来说,近红外技术的书籍并不是很多,在前面我也写过《如何学习近红外技术》的文章,但想要更加深入的理解近红外技术,以下的这些入门的技术文章你一定得看看,首先我强烈推荐的是2014年发布的fNIRS特刊——庆祝功能近红外光谱技术诞生20周年,在这里包含了9篇评论文章和49篇研究文章,涉及有近红外技术的仪器设计技术、数据分析方法、大脑发育、认知科学、运动、精神病学以及神经病学等。

当然除了特刊里的文章外,你还应该查看下以下的技术研究文章。(ps:本文仅分享与技术相关的文章)

基础软件文章

Huppert T. J., Diamond S. G., Franceschini M. A., Boas D. A., “Homer: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48, 280–298 (2009)10.1364/AO.48.00D280 10.1364/AO.48.00D280

Ye J. C., Tak S., Jang K. E., Jung J., Jang J., “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44, 428–447 (2009)10.1016/j.neuroimage.2008.08.036 10.1016/j.neuroimage.2008.08.036

近红外基础理论

Lloyd-Fox, S., Blasi, A., and Elwell, C. E. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34, 269–284.

Ferrari M., Quaresima V., “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).

Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol. 2005;50:R1–R43.

Gratton E, Toronov V, Wolf U, Wolf M, Webb A. Measurement of brain activity by near-infrared light. J Biomed Opt. 2005;10:011008.

Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988;33:1433–1442.

Modified Beer–Lambert law修正版比尔-朗伯定律

Sassaroli A, Fantini S. Comment on the modified Beer–Lambert law for scattering media. Phys Med Biol. 2004;49:N255–N257.

Kocsis L, Herman P, Eke A. The modified Beer–Lambert law revisited. Phys Med Biol. 2006;51:N91–N98.

实验设计

Dale A. M., “Optimal experimental design for event-related fmri,” Hum. Brain Mapp. 8, 109–114 (1999)10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W 10.1002/(SICI)1097-0193(1999)8:2/3

Plichta M. M., Herrmann M. J., Baehne C. G., Ehlis A. C., Richter M. M., Pauli P., Fallgatter A. J., “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31, 116–124 (2006)10.1016/j.neuroimage.2005.12.008

伪迹检测与校正方法

Scholkmann F., Spichtig S., Muehlemann T., Wolf M., “How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation,” Physiol. Meas. 31, 649–662 (2010)10.1088/0967-3334/31/5/004

Molavi B., Dumont G. A., “Wavelet-based motion artifact removal for functional near-infrared spectroscopy,” Physiol. Meas. 33, 259–270 2012 10.1088/0967-3334/33/2/259

Izzetoglu M., Chitrapu P., Bunce S., Onaral B., “Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering,” Biomed. Eng. Online 9, 16 (2010)10.1186/1475-925X-9-16

Cooper R. J., Selb J., Gagnon L., Phillip D., Schytz H. W., Iversen H. K., Ashina M., Boas D. A., [“A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy,” Front. Neurosci. 6, 147 (2012)10.3389/fnins.2012.00147] (https://www.frontiersin.org/articles/10.3389/fnins.2012.00147/full)

Robertson, F. C., Douglas, T. S., and Meintjes, E. M. (2010). Motion artifact removal for functional near infrared spectroscopy: a comparison of methods. IEEE Trans. Biomed. Eng. 57, 1377–1387.

Barker J. W., Aarabi A., Huppert T. J., “Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS,” Biomed. Opt. Express. 4(8), 1366–1379 (2013).10.1364/BOE.4.001366

统计参数模型

Deneux T, Faugeras O. Using nonlinear models in fMRI data analysis: model selection and activation detection. NeuroImage. 2006;32:1669–1689.

Friston K. J., Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st ed., Elsevier/Academic Press, Amsterdam, Boston: (2007).

Friston K. J., et al. , “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapping 2(4), 189–210 (1994).10.1002/hbm.460020402

脑机接口(BCI)

Coyle S, Ward T, Markham C. Physiological noise in near-infrared spectroscopy: implications for optical brain computer interfacing. Conf Proc IEEE Eng Med Biol Soc. 2004a;6:4540–4543.

Coyle S, Ward T, Markham C, McDarby G. On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol Meas. 2004b Aug;25(4):815–822.

Coyle SM, Ward TE, Markham CM. Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng. 2007;4(3):219–226

Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Shimizu K, Birbaumer N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage. 2007;34(4):1416–1427.

最后

以上的文章,我并没有全部的全文阅读,但是至少是我个人来说,作为学习近红外技术应该去阅读的最基本的文章,本文仅列出了以上文章的题目,或许在未来,我们应该一起来读读这些文献,在很久之前,我曾在52brain公众号上举办过一天一篇文献的活动,后来因为精力的问题未能继续下去,或许如何你们有精力的同学可以给我发送邮件,我们一起将有意义的活动举办下去。最后,本文的文章仅为学习使用,或许还有更优秀的文章,也欢迎大家推荐留言。

相关

本文首发在Chen Rui blog,文章仅供学习使用,如有疑问及建议,可联系邮箱[email protected]

你可能感兴趣的:(fNIRS技术入门文章)