Go 语言保证了既能到达静态编译语言的安全和性能,又达到了动态语言开发维护的高效率动态语言开发维护的高效率
使用一个表达式来形容 Go 语言:Go = C + Python
说明 Go 语言既有 C 静态语言程序的运行速度,又能达到 Python 动态语言的快速开发
func getSumAndSub(n1 int, n2 int) (int, int ) {
sum := n1 + n2
sub := n1 - n2
return sum , sub
}
如果是对源码编译后,再执行,Go 的执行流程如下图
如果我们是对源码直接 执行 go run 源码,Go 的执行流程如下图
两种执行流程的方式区别:
使用
import (
"fmt"
"math"
)
代替
import "fmt"
import "math"
以简化导入
使用
x, y int
代替
x int, y int
以简化声明
函数可以返回任意数量的返回值。
package main
import "fmt"
func swap(x, y string) (string, string) {
return y, x
}
func main() {
a, b := swap("hello", "world")
fmt.Println(a, b)
}
world hello
若直接return
则按变量声明顺序返回
在函数中,简洁赋值语句 :=
可在类型明确的地方代替 var
声明。
函数外的每个语句都必须以关键字开始(var
, func
等等),因此 :=
结构不能在函数外使用。
package main
import "fmt"
func main() {
var i, j int = 1, 2
k := 3
c, python, java := true, false, "no!"
fmt.Println(i, j, k, c, python, java)
}
1 2 3 true false no!
常量的声明与变量类似,只不过是使用 const
关键字。
常量可以是字符、字符串、布尔值或数值。
常量不能用 :=
语法声明。
package main
import "fmt"
const Pi = 3.14
func main() {
const World = "世界"
fmt.Println("Hello", World)
fmt.Println("Happy", Pi, "Day")
const Truth = true
fmt.Println("Go rules?", Truth)
}
package main
import "fmt"
func main() {
sum := 0
for i := 0; i < 10; i++ {
sum += i
}
fmt.Println(sum)
}
45
初始化语句和后置语句是可选的,for 是 Go 中的 “while”
package main
import "fmt"
func main() {
sum := 1
for sum < 1000 {
sum += sum
}
fmt.Println(sum)
}
1024
如果省略循环条件,该循环就不会结束,因此无限循环可以写得很紧凑。
package main
func main() {
for {
}
}
同 for 一样, if 语句可以在条件表达式前执行一个简单的语句。
该语句声明的变量作用域仅在 if 之内。
package main
import (
"fmt"
"math"
)
func pow(x, n, lim float64) float64 {
if v := math.Pow(x, n); v < lim {
return v
}
return lim
}
func main() {
fmt.Println(
pow(3, 2, 10),
pow(3, 3, 20),
)
}
9 20
switch 是编写一连串 if - else 语句的简便方法。它运行第一个值等于条件表达式的 case 语句。
Go 的 switch 语句类似于 C、C++、Java、JavaScript 和 PHP 中的,不过 Go 只运行选定的 case,而非之后所有的 case。
实际上,Go 自动提供了在这些语言中每个 case 后面所需的 break 语句。 除非以 fallthrough 语句结束,否则分支会自动终止。
Go 的另一点重要的不同在于 switch 的 case 无需为常量,且取值不必为整数。
package main
import (
"fmt"
"runtime"
)
func main() {
fmt.Print("Go runs on ")
switch os := runtime.GOOS; os {
case "darwin":
fmt.Println("OS X.")
case "linux":
fmt.Println("Linux.")
default:
// freebsd, openbsd,
// plan9, windows...
fmt.Printf("%s.\n", os)
}
}
输出根据运行代码机器的os决定
defer 语句会将函数推迟到外层函数返回之后执行。
推迟调用的函数其参数会立即求值,但直到外层函数返回前该函数都不会被调用。
package main
import "fmt"
func main() {
defer fmt.Println("world")
fmt.Println("hello")
}
hello
world
推迟的函数调用会被压入一个栈中。
当外层函数返回时,被推迟的函数会按照后进先出的顺序调用。
package main
import "fmt"
func main() {
fmt.Println("counting")
for i := 0; i < 10; i++ {
defer fmt.Println(i)
}
fmt.Println("done")
}
counting
done
9
8
7
6
5
4
3
2
1
0
Go 拥有指针。指针保存了值的内存地址。
类型 *T
是指向 T
类型值的指针。其零值为 nil
。
var p *int
&
操作符会生成一个指向其操作数的指针。
i := 42
p = &i
*
操作符表示指针指向的底层值。
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i
这也就是通常所说的“间接引用”或“重定向”。
与 C 不同,Go 没有指针运算。
package main
import "fmt"
func main() {
i, j := 42, 2701
p := &i // 指向 i
fmt.Println(*p) // 通过指针读取 i 的值
*p = 21 // 通过指针设置 i 的值
fmt.Println(i) // 查看 i 的值
p = &j // 指向 j
*p = *p / 37 // 通过指针对 j 进行除法运算
fmt.Println(j) // 查看 j 的值
}
42
21
73
一个结构体(struct)就是一组字段(field)。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
fmt.Println(Vertex{1, 2})
}
{1 2}
结构体字段使用点号来访问。
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}
4
每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。
类型 []T
表示一个元素类型为 T
的切片。
切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:
a[low : high]
它会选择一个半开区间,包括第一个元素,但排除最后一个元素。
以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:
a[1:4]
切片就像数组的引用。
切片并不存储任何数据,它只是描述了底层数组中的一段。
更改切片的元素会修改其底层数组中对应的元素。
与它共享底层数组的切片都会观测到这些修改。
package main
import "fmt"
func main() {
names := [4]string{
"John",
"Paul",
"George",
"Ringo",
}
fmt.Println(names)
a := names[0:2]
b := names[1:3]
fmt.Println(a, b)
b[0] = "XXX"
fmt.Println(a, b)
fmt.Println(names)
}
[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]
切片文法类似于没有长度的数组文法。
这是一个数组文法:
[3]bool{true, true, false}
下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:
[]bool{true, true, false}
在进行切片时,你可以利用它的默认行为来忽略上下界。
切片下界的默认值为 0,上界则是该切片的长度。
对于数组
var a [10]int
来说,以下切片是等价的:
a[0:10]
a[:10]
a[0:]
a[:]
切片拥有 长度 和 容量。
切片的长度就是它所包含的元素个数。
切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。
切片 s 的长度和容量可通过表达式 len(s) 和 cap(s) 来获取。
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
printSlice(s)
// 截取切片使其长度为 0
s = s[:0]
printSlice(s)
// 拓展其长度
s = s[:4]
printSlice(s)
// 舍弃前两个值
s = s[2:]
printSlice(s)
}
func printSlice(s []int) {
fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
len=6 cap=6 [2 3 5 7 11 13]
len=0 cap=6 []
len=4 cap=6 [2 3 5 7]
len=2 cap=4 [5 7]
切片可以用内建函数 make 来创建,这也是你创建动态数组的方式。
make 函数会分配一个元素为零值的数组并返回一个引用了它的切片:
a := make([]int, 5) // len(a)=5
要指定它的容量,需向 make 传入第三个参数:
b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4
切片可包含任何类型,甚至包括其它的切片。
package main
import (
"fmt"
"strings"
)
func main() {
// 创建一个井字板(经典游戏)
board := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}
// 两个玩家轮流打上 X 和 O
board[0][0] = "X"
board[2][2] = "O"
board[1][2] = "X"
board[1][0] = "O"
board[0][2] = "X"
for i := 0; i < len(board); i++ {
fmt.Printf("%s\n", strings.Join(board[i], " "))
}
}
X _ X
O _ X
_ _ O
为切片追加新的元素是种常用的操作,为此 Go 提供了内建的 append
函数。内建函数的文档对此函数有详细的介绍。
func append(s []T, vs ...T) []T
append
的第一个参数 s
是一个元素类型为 T
的切片,其余类型为 T
的值将会追加到该切片的末尾。
append
的结果是一个包含原切片所有元素加上新添加元素的切片。
当 s
的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。返回的切片会指向这个新分配的数组。
for 循环的 range 形式可遍历切片或映射。
当使用 for 循环遍历切片时,每次迭代都会返回两个值。第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
映射将键映射到值。
映射的零值为 nil 。nil 映射既没有键,也不能添加键。
make 函数会返回给定类型的映射,并将其初始化备用。
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m map[string]Vertex
func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}
{40.68433 -74.39967}
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
"Google": {37.42202, -122.08408},
}
func main() {
fmt.Println(m)
}
map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]
在映射 m 中插入或修改元素:
m[key] = elem
获取元素:
elem = m[key]
删除元素:
delete(m, key)
通过双赋值检测某个键是否存在:
elem, ok = m[key]
若 key
在 m
中,ok
为 true
;否则,ok
为 false
。
若 key
不在映射中,那么 elem
是该映射元素类型的零值。
同样的,当从映射中读取某个不存在的键时,结果是映射的元素类型的零值。
注 :若 elem
或 ok
还未声明,你可以使用短变量声明:
elem, ok := m[key]
package main
import "fmt"
func main() {
m := make(map[string]int)
m["Answer"] = 42
fmt.Println("The value:", m["Answer"])
m["Answer"] = 48
fmt.Println("The value:", m["Answer"])
delete(m, "Answer")
fmt.Println("The value:", m["Answer"])
v, ok := m["Answer"]
fmt.Println("The value:", v, "Present?", ok)
}
The value: 42
The value: 48
The value: 0
The value: 0 Present? false
函数也是值。它们可以像其它值一样传递。
函数值可以用作函数的参数或返回值。
package main
import (
"fmt"
"math"
)
func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}
func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x*x + y*y)
}
fmt.Println(hypot(5, 12))
fmt.Println(compute(hypot))
fmt.Println(compute(math.Pow))
}
13
5
81
Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。
例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。
package main
import "fmt"
func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}
func main() {
pos, neg := adder(), adder()
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2*i),
)
}
}
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90
Go 没有类。不过你可以为结构体类型定义方法。
方法就是一类带特殊的 接收者 参数的函数。
方法接收者在它自己的参数列表内,位于 func 关键字和方法名之间。
在此例中,Abs 方法拥有一个名为 v,类型为 Vertex 的接收者。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
}
5
你可以为指针接收者声明方法。
例如,这里为 *Vertex
定义了 Scale
方法。
指针接收者的方法可以修改接收者指向的值(就像 Scale 在这做的)。
若使用值接收者,那么 Scale 方法会对原始 Vertex 值的副本进行操作。
Scale 方法必须用指针接受者来更改 main 函数中声明的 Vertex 的值。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func main() {
v := Vertex{3, 4}
v.Scale(10)
fmt.Println(v.Abs())
}
50
接口类型 是由一组方法签名定义的集合。
接口类型的变量可以保存任何实现了这些方法的值。
注意: 示例代码的 22 行存在一个错误。由于 Abs 方法只为 *Vertex (指针类型)定义,因此 Vertex(值类型)并未实现 Abser。
package main
import (
"fmt"
"math"
)
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
a = v
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
./prog.go:22:4: cannot use v (type Vertex) as type Abser in assignment:
Vertex does not implement Abser (Abs method has pointer receiver)
类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。
隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
fmt.Println(t.S)
}
func main() {
var i I = T{"hello"}
i.M()
}
hello
接口也是值。它们可以像其它值一样传递。
接口值可以用作函数的参数或返回值。
在内部,接口值可以看做包含值和具体类型的元组:(value, type)
接口值保存了一个具体底层类型的具体值。
接口值调用方法时会执行其底层类型的同名方法。
package main
import (
"fmt"
"math"
)
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
fmt.Println(t.S)
}
type F float64
func (f F) M() {
fmt.Println(f)
}
func main() {
var i I
i = &T{"Hello"}
describe(i)
i.M()
i = F(math.Pi)
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793
指定了零个方法的接口值被称为空接口:interface{}
空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)
空接口被用来处理未知类型的值。例如,fmt.Print 可接受类型为 interface{} 的任意数量的参数。
package main
import "fmt"
func main() {
var i interface{}
describe(i)
i = 42
describe(i)
i = "hello"
describe(i)
}
func describe(i interface{}) {
fmt.Printf("(%v, %T)\n", i, i)
}
(<nil>, <nil>)
(42, int)
(hello, string)
类型断言 提供了访问接口值底层具体值的方式。
t := i.(T)
该语句断言接口值 i 保存了具体类型 T,并将其底层类型为 T 的值赋予变量 t。
若 i 并未保存 T 类型的值,该语句就会触发一个恐慌。
为了 判断 一个接口值是否保存了一个特定的类型,类型断言可返回两个值:其底层值以及一个报告断言是否成功的布尔值。
t, ok := i.(T)
若 i 保存了一个 T,那么 t 将会是其底层值,而 ok 为 true。
否则,ok 将为 false 而 t 将为 T 类型的零值,程序并不会产生恐慌。
请注意这种语法和读取一个映射时的相同之处。
package main
import "fmt"
func main() {
var i interface{} = "hello"
s := i.(string)
fmt.Println(s)
s, ok := i.(string)
fmt.Println(s, ok)
f, ok := i.(float64)
fmt.Println(f, ok)
f = i.(float64) // 报错(panic)
fmt.Println(f)
}
hello
hello true
0 false
panic: interface conversion: interface {} is string, not float64
goroutine 1 [running]:
main.main()
/tmp/sandbox3826064011/prog.go:17 +0x165
类型选择是一种按顺序从几个类型断言中选择分支的结构。
类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。
switch v := i.(type) {
case T:
// v 的类型为 T
case S:
// v 的类型为 S
default:
// 没有匹配,v 与 i 的类型相同
}
此选择语句判断接口值 i 保存的值类型是 T 还是 S。在 T 或 S 的情况下,变量 v 会分别按 T 或 S 类型保存 i 拥有的值。在默认(即没有匹配)的情况下,变量 v 与 i 的接口类型和值相同。
package main
import "fmt"
func do(i interface{}) {
switch v := i.(type) {
case int:
fmt.Printf("Twice %v is %v\n", v, v*2)
case string:
fmt.Printf("%q is %v bytes long\n", v, len(v))
default:
fmt.Printf("I don't know about type %T!\n", v)
}
}
func main() {
do(21)
do("hello")
do(true)
}
Twice 21 is 42
"hello" is 5 bytes long
I don't know about type bool!
fmt 包中定义的 Stringer 是最普遍的接口之一。
type Stringer interface {
String() string
}
Stringer 是一个可以用字符串描述自己的类型。fmt 包(还有很多包)都通过此接口来打印值。
package main
import "fmt"
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}
func main() {
a := Person{"Arthur Dent", 42}
z := Person{"Zaphod Beeblebrox", 9001}
fmt.Println(a, z)
}
Go 程(goroutine)是由 Go 运行时管理的轻量级线程。
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
下面为某一次的输出结果
world
hello
hello
world
world
hello
hello
world
world
hello
信道是带有类型的管道,你可以通过它用信道操作符 <-
来发送或者接收值。
ch <- v // 将 v 发送至信道 ch。
v := <-ch // 从 ch 接收值并赋予 v。
(“箭头”就是数据流的方向。)
和映射与切片一样,信道在使用前必须创建:
ch := make(chan int)
默认情况下,发送和接收操作在另一端准备好之前都会阻塞。这使得 Go 程可以在没有显式的锁或竞态变量的情况下进行同步。
以下示例对切片中的数进行求和,将任务分配给两个 Go 程。一旦两个 Go 程完成了它们的计算,它就能算出最终的结果。
package main
import "fmt"
func sum(s []int, c chan int) {
sum := 0
for _, v := range s {
sum += v
}
c <- sum // 将和送入 c
}
func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // 从 c 中接收
fmt.Println(x, y, x+y)
}
信道可以是带缓冲的。将缓冲长度作为第二个参数提供给 make
来初始化一个带缓冲的信道:
ch := make(chan int, 100)
仅当信道的缓冲区填满后,向其发送数据时才会阻塞。当缓冲区为空时,接受方会阻塞。
修改示例填满缓冲区,然后看看会发生什么。
[1]【尚硅谷】Golang入门到实战教程
[2] 《A Tour of Go》