Golang学习笔记

目录

  • 特点
    • 天然并发
    • 函数可以返回多个值
  • 开发目录结构
  • Golang 执行流程分析
  • 基础
    • 导入
    • 函数
    • 多值返回
    • 短变量声明
    • 常量
    • for
    • if 的简短语句
    • switch
    • defer
    • 指针
    • 结构体
    • 切片
      • 切片文法
      • 切片的默认行为
      • 切片的长度与容量
      • 用 make 创建切片
      • 切片的切片
      • 向切片追加元素
    • Range
    • 映射
      • 修改映射
    • 函数值
    • 函数的闭包
  • 方法和接口
    • 方法
    • 指针接收者
    • 接口
    • 接口与隐式实现
    • 接口值
    • 空接口
    • 类型断言
    • 类型选择
    • Stringer
  • 并发
    • Go程
    • 信道
    • 带缓冲的信道
  • 参考

特点

Go 语言保证了既能到达静态编译语言的安全和性能,又达到了动态语言开发维护的高效率动态语言开发维护的高效率

使用一个表达式来形容 Go 语言:Go = C + Python

说明 Go 语言既有 C 静态语言程序的运行速度,又能达到 Python 动态语言的快速开发

天然并发

  1. 从语言层面支持并发,实现简单
  2. goroutine,轻量级线程,可实现大并发处理,高效利用多核
  3. 基于 CSP 并发模型(Communicating Sequential Processes)实现

函数可以返回多个值

func getSumAndSub(n1 int, n2 int) (int, int ) {
	sum := n1 + n2
	sub := n1 - n2
	return sum , sub
}

开发目录结构

Golang学习笔记_第1张图片

Golang 执行流程分析

如果是对源码编译后,再执行,Go 的执行流程如下图
Golang学习笔记_第2张图片
如果我们是对源码直接 执行 go run 源码,Go 的执行流程如下图
Golang学习笔记_第3张图片
两种执行流程的方式区别:

  1. 如果我们先编译生成了可执行文件,那么我们可以将该可执行文件拷贝到没有 go 开发环境的机器上,仍然可以运行
  2. 如果我们是直接 go rungo 源代码,那么如果要在另外一个机器上这么运行,也需要 go 开发环境,否则无法执行
  3. 在编译时,编译器会将程序运行依赖的库文件包含在可执行文件中,所以,可执行文件变大了很多

基础

导入

使用

import (
	"fmt"
	"math"
)

代替

import "fmt"
import "math"

以简化导入

函数

使用

x, y int

代替

x int, y int

以简化声明

多值返回

函数可以返回任意数量的返回值。

package main

import "fmt"

func swap(x, y string) (string, string) {
	return y, x
}

func main() {
	a, b := swap("hello", "world")
	fmt.Println(a, b)
}
world hello

若直接return则按变量声明顺序返回

短变量声明

在函数中,简洁赋值语句 := 可在类型明确的地方代替 var 声明。

函数外的每个语句都必须以关键字开始(var, func 等等),因此 := 结构不能在函数外使用。

package main

import "fmt"

func main() {
	var i, j int = 1, 2
	k := 3
	c, python, java := true, false, "no!"

	fmt.Println(i, j, k, c, python, java)
}
1 2 3 true false no!

常量

常量的声明与变量类似,只不过是使用 const 关键字。

常量可以是字符、字符串、布尔值或数值。

常量不能用 := 语法声明。

package main

import "fmt"

const Pi = 3.14

func main() {
	const World = "世界"
	fmt.Println("Hello", World)
	fmt.Println("Happy", Pi, "Day")

	const Truth = true
	fmt.Println("Go rules?", Truth)
}

for

package main

import "fmt"

func main() {
	sum := 0
	for i := 0; i < 10; i++ {
		sum += i
	}
	fmt.Println(sum)
}
45

初始化语句和后置语句是可选的,for 是 Go 中的 “while”

package main

import "fmt"

func main() {
	sum := 1
	for sum < 1000 {
		sum += sum
	}
	fmt.Println(sum)
}
1024

如果省略循环条件,该循环就不会结束,因此无限循环可以写得很紧凑。

package main

func main() {
	for {
	}
}

if 的简短语句

同 for 一样, if 语句可以在条件表达式前执行一个简单的语句。

该语句声明的变量作用域仅在 if 之内。

package main

import (
	"fmt"
	"math"
)

func pow(x, n, lim float64) float64 {
	if v := math.Pow(x, n); v < lim {
		return v
	}
	return lim
}

func main() {
	fmt.Println(
		pow(3, 2, 10),
		pow(3, 3, 20),
	)
}
9 20

switch

switch 是编写一连串 if - else 语句的简便方法。它运行第一个值等于条件表达式的 case 语句。

Go 的 switch 语句类似于 C、C++、Java、JavaScript 和 PHP 中的,不过 Go 只运行选定的 case,而非之后所有的 case。

实际上,Go 自动提供了在这些语言中每个 case 后面所需的 break 语句。 除非以 fallthrough 语句结束,否则分支会自动终止。

Go 的另一点重要的不同在于 switch 的 case 无需为常量,且取值不必为整数。

package main

import (
	"fmt"
	"runtime"
)

func main() {
	fmt.Print("Go runs on ")
	switch os := runtime.GOOS; os {
	case "darwin":
		fmt.Println("OS X.")
	case "linux":
		fmt.Println("Linux.")
	default:
		// freebsd, openbsd,
		// plan9, windows...
		fmt.Printf("%s.\n", os)
	}
}

输出根据运行代码机器的os决定

defer

defer 语句会将函数推迟到外层函数返回之后执行。

推迟调用的函数其参数会立即求值,但直到外层函数返回前该函数都不会被调用。

package main

import "fmt"

func main() {
	defer fmt.Println("world")

	fmt.Println("hello")
}
hello
world

推迟的函数调用会被压入一个栈中。

当外层函数返回时,被推迟的函数会按照后进先出的顺序调用。

package main

import "fmt"

func main() {
	fmt.Println("counting")

	for i := 0; i < 10; i++ {
		defer fmt.Println(i)
	}

	fmt.Println("done")
}
counting
done
9
8
7
6
5
4
3
2
1
0

指针

Go 拥有指针。指针保存了值的内存地址。

类型 *T 是指向 T 类型值的指针。其零值为 nil

var p *int

& 操作符会生成一个指向其操作数的指针。

i := 42
p = &i

* 操作符表示指针指向的底层值。

fmt.Println(*p) // 通过指针 p 读取 i
*p = 21         // 通过指针 p 设置 i

这也就是通常所说的“间接引用”或“重定向”。

与 C 不同,Go 没有指针运算。

package main

import "fmt"

func main() {
	i, j := 42, 2701

	p := &i         // 指向 i
	fmt.Println(*p) // 通过指针读取 i 的值
	*p = 21         // 通过指针设置 i 的值
	fmt.Println(i)  // 查看 i 的值

	p = &j         // 指向 j
	*p = *p / 37   // 通过指针对 j 进行除法运算
	fmt.Println(j) // 查看 j 的值
}
42
21
73

结构体

一个结构体(struct)就是一组字段(field)。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	fmt.Println(Vertex{1, 2})
}
{1 2}

结构体字段使用点号来访问。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	v := Vertex{1, 2}
	v.X = 4
	fmt.Println(v.X)
}
4

切片

每个数组的大小都是固定的。而切片则为数组元素提供动态大小的、灵活的视角。在实践中,切片比数组更常用。

类型 []T 表示一个元素类型为 T 的切片。

切片通过两个下标来界定,即一个上界和一个下界,二者以冒号分隔:

a[low : high]

它会选择一个半开区间,包括第一个元素,但排除最后一个元素

以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:

a[1:4]

切片就像数组的引用。

切片并不存储任何数据,它只是描述了底层数组中的一段。

更改切片的元素会修改其底层数组中对应的元素。

与它共享底层数组的切片都会观测到这些修改。

package main

import "fmt"

func main() {
	names := [4]string{
		"John",
		"Paul",
		"George",
		"Ringo",
	}
	fmt.Println(names)

	a := names[0:2]
	b := names[1:3]
	fmt.Println(a, b)

	b[0] = "XXX"
	fmt.Println(a, b)
	fmt.Println(names)
}
[John Paul George Ringo]
[John Paul] [Paul George]
[John XXX] [XXX George]
[John XXX George Ringo]

切片文法

切片文法类似于没有长度的数组文法。

这是一个数组文法:

[3]bool{true, true, false}

下面这样则会创建一个和上面相同的数组,然后构建一个引用了它的切片:

[]bool{true, true, false}

切片的默认行为

在进行切片时,你可以利用它的默认行为来忽略上下界。

切片下界的默认值为 0,上界则是该切片的长度。

对于数组

var a [10]int

来说,以下切片是等价的:

a[0:10]
a[:10]
a[0:]
a[:]

切片的长度与容量

切片拥有 长度 和 容量。

切片的长度就是它所包含的元素个数。

切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。

切片 s 的长度和容量可通过表达式 len(s) 和 cap(s) 来获取。

package main

import "fmt"

func main() {
	s := []int{2, 3, 5, 7, 11, 13}
	printSlice(s)

	// 截取切片使其长度为 0
	s = s[:0]
	printSlice(s)

	// 拓展其长度
	s = s[:4]
	printSlice(s)

	// 舍弃前两个值
	s = s[2:]
	printSlice(s)
}

func printSlice(s []int) {
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
len=6 cap=6 [2 3 5 7 11 13]
len=0 cap=6 []
len=4 cap=6 [2 3 5 7]
len=2 cap=4 [5 7]

用 make 创建切片

切片可以用内建函数 make 来创建,这也是你创建动态数组的方式。

make 函数会分配一个元素为零值的数组并返回一个引用了它的切片:

a := make([]int, 5)  // len(a)=5

要指定它的容量,需向 make 传入第三个参数:

b := make([]int, 0, 5) // len(b)=0, cap(b)=5

b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:]      // len(b)=4, cap(b)=4

切片的切片

切片可包含任何类型,甚至包括其它的切片。

package main

import (
	"fmt"
	"strings"
)

func main() {
	// 创建一个井字板(经典游戏)
	board := [][]string{
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
	}

	// 两个玩家轮流打上 X 和 O
	board[0][0] = "X"
	board[2][2] = "O"
	board[1][2] = "X"
	board[1][0] = "O"
	board[0][2] = "X"

	for i := 0; i < len(board); i++ {
		fmt.Printf("%s\n", strings.Join(board[i], " "))
	}
}
X _ X
O _ X
_ _ O

向切片追加元素

为切片追加新的元素是种常用的操作,为此 Go 提供了内建的 append 函数。内建函数的文档对此函数有详细的介绍。

func append(s []T, vs ...T) []T

append 的第一个参数 s 是一个元素类型为 T 的切片,其余类型为 T 的值将会追加到该切片的末尾。

append 的结果是一个包含原切片所有元素加上新添加元素的切片。

s 的底层数组太小,不足以容纳所有给定的值时,它就会分配一个更大的数组。返回的切片会指向这个新分配的数组。

Range

for 循环的 range 形式可遍历切片或映射。

当使用 for 循环遍历切片时,每次迭代都会返回两个值。第一个值为当前元素的下标,第二个值为该下标所对应元素的一份副本。

package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
	for i, v := range pow {
		fmt.Printf("2**%d = %d\n", i, v)
	}
}
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128

映射

映射将键映射到值。

映射的零值为 nil 。nil 映射既没有键,也不能添加键。

make 函数会返回给定类型的映射,并将其初始化备用。

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m map[string]Vertex

func main() {
	m = make(map[string]Vertex)
	m["Bell Labs"] = Vertex{
		40.68433, -74.39967,
	}
	fmt.Println(m["Bell Labs"])
}
{40.68433 -74.39967}
package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m = map[string]Vertex{
	"Bell Labs": {40.68433, -74.39967},
	"Google":    {37.42202, -122.08408},
}

func main() {
	fmt.Println(m)
}
map[Bell Labs:{40.68433 -74.39967} Google:{37.42202 -122.08408}]

修改映射

在映射 m 中插入或修改元素:

m[key] = elem

获取元素:

elem = m[key]

删除元素:

delete(m, key)

通过双赋值检测某个键是否存在:

elem, ok = m[key]

keym 中,oktrue ;否则,okfalse

key 不在映射中,那么 elem 是该映射元素类型的零值。

同样的,当从映射中读取某个不存在的键时,结果是映射的元素类型的零值。

注 :若 elemok 还未声明,你可以使用短变量声明:

elem, ok := m[key]
package main

import "fmt"

func main() {
	m := make(map[string]int)

	m["Answer"] = 42
	fmt.Println("The value:", m["Answer"])

	m["Answer"] = 48
	fmt.Println("The value:", m["Answer"])

	delete(m, "Answer")
	fmt.Println("The value:", m["Answer"])

	v, ok := m["Answer"]
	fmt.Println("The value:", v, "Present?", ok)
}
The value: 42
The value: 48
The value: 0
The value: 0 Present? false

函数值

函数也是值。它们可以像其它值一样传递。

函数值可以用作函数的参数或返回值。

package main

import (
	"fmt"
	"math"
)

func compute(fn func(float64, float64) float64) float64 {
	return fn(3, 4)
}

func main() {
	hypot := func(x, y float64) float64 {
		return math.Sqrt(x*x + y*y)
	}
	fmt.Println(hypot(5, 12))

	fmt.Println(compute(hypot))
	fmt.Println(compute(math.Pow))
}
13
5
81

函数的闭包

Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。该函数可以访问并赋予其引用的变量的值,换句话说,该函数被这些变量“绑定”在一起。

例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。

package main

import "fmt"

func adder() func(int) int {
	sum := 0
	return func(x int) int {
		sum += x
		return sum
	}
}

func main() {
	pos, neg := adder(), adder()
	for i := 0; i < 10; i++ {
		fmt.Println(
			pos(i),
			neg(-2*i),
		)
	}
}
0 0
1 -2
3 -6
6 -12
10 -20
15 -30
21 -42
28 -56
36 -72
45 -90

方法和接口

方法

Go 没有类。不过你可以为结构体类型定义方法。

方法就是一类带特殊的 接收者 参数的函数。

方法接收者在它自己的参数列表内,位于 func 关键字和方法名之间。

在此例中,Abs 方法拥有一个名为 v,类型为 Vertex 的接收者。

package main

import (
	"fmt"
	"math"
)

type Vertex struct {
	X, Y float64
}

func (v Vertex) Abs() float64 {
	return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
	v := Vertex{3, 4}
	fmt.Println(v.Abs())
}
5

指针接收者

你可以为指针接收者声明方法。

例如,这里为 *Vertex 定义了 Scale 方法。

指针接收者的方法可以修改接收者指向的值(就像 Scale 在这做的)。

若使用值接收者,那么 Scale 方法会对原始 Vertex 值的副本进行操作。

Scale 方法必须用指针接受者来更改 main 函数中声明的 Vertex 的值。

package main

import (
	"fmt"
	"math"
)

type Vertex struct {
	X, Y float64
}

func (v Vertex) Abs() float64 {
	return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func (v *Vertex) Scale(f float64) {
	v.X = v.X * f
	v.Y = v.Y * f
}

func main() {
	v := Vertex{3, 4}
	v.Scale(10)
	fmt.Println(v.Abs())
}

50

接口

接口类型 是由一组方法签名定义的集合。

接口类型的变量可以保存任何实现了这些方法的值。

注意: 示例代码的 22 行存在一个错误。由于 Abs 方法只为 *Vertex (指针类型)定义,因此 Vertex(值类型)并未实现 Abser。

package main

import (
	"fmt"
	"math"
)

type Abser interface {
	Abs() float64
}

func main() {
	var a Abser
	f := MyFloat(-math.Sqrt2)
	v := Vertex{3, 4}

	a = f  // a MyFloat 实现了 Abser
	a = &v // a *Vertex 实现了 Abser

	// 下面一行,v 是一个 Vertex(而不是 *Vertex)
	// 所以没有实现 Abser。
	a = v

	fmt.Println(a.Abs())
}

type MyFloat float64

func (f MyFloat) Abs() float64 {
	if f < 0 {
		return float64(-f)
	}
	return float64(f)
}

type Vertex struct {
	X, Y float64
}

func (v *Vertex) Abs() float64 {
	return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
./prog.go:22:4: cannot use v (type Vertex) as type Abser in assignment:
	Vertex does not implement Abser (Abs method has pointer receiver)

接口与隐式实现

类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。

隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。

因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。

package main

import "fmt"

type I interface {
	M()
}

type T struct {
	S string
}

// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
	fmt.Println(t.S)
}

func main() {
	var i I = T{"hello"}
	i.M()
}
hello

接口值

接口也是值。它们可以像其它值一样传递。

接口值可以用作函数的参数或返回值。

在内部,接口值可以看做包含值和具体类型的元组:(value, type)

接口值保存了一个具体底层类型的具体值。

接口值调用方法时会执行其底层类型的同名方法。

package main

import (
	"fmt"
	"math"
)

type I interface {
	M()
}

type T struct {
	S string
}

func (t *T) M() {
	fmt.Println(t.S)
}

type F float64

func (f F) M() {
	fmt.Println(f)
}

func main() {
	var i I

	i = &T{"Hello"}
	describe(i)
	i.M()

	i = F(math.Pi)
	describe(i)
	i.M()
}

func describe(i I) {
	fmt.Printf("(%v, %T)\n", i, i)
}
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793

空接口

指定了零个方法的接口值被称为空接口:interface{}

空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)

空接口被用来处理未知类型的值。例如,fmt.Print 可接受类型为 interface{} 的任意数量的参数。

package main

import "fmt"

func main() {
	var i interface{}
	describe(i)

	i = 42
	describe(i)

	i = "hello"
	describe(i)
}

func describe(i interface{}) {
	fmt.Printf("(%v, %T)\n", i, i)
}
(<nil>, <nil>)
(42, int)
(hello, string)

类型断言

类型断言 提供了访问接口值底层具体值的方式。

t := i.(T)

该语句断言接口值 i 保存了具体类型 T,并将其底层类型为 T 的值赋予变量 t。

若 i 并未保存 T 类型的值,该语句就会触发一个恐慌。

为了 判断 一个接口值是否保存了一个特定的类型,类型断言可返回两个值:其底层值以及一个报告断言是否成功的布尔值。

t, ok := i.(T)

若 i 保存了一个 T,那么 t 将会是其底层值,而 ok 为 true。

否则,ok 将为 false 而 t 将为 T 类型的零值,程序并不会产生恐慌。

请注意这种语法和读取一个映射时的相同之处。

package main

import "fmt"

func main() {
	var i interface{} = "hello"

	s := i.(string)
	fmt.Println(s)

	s, ok := i.(string)
	fmt.Println(s, ok)

	f, ok := i.(float64)
	fmt.Println(f, ok)

	f = i.(float64) // 报错(panic)
	fmt.Println(f)
}
hello
hello true
0 false
panic: interface conversion: interface {} is string, not float64

goroutine 1 [running]:
main.main()
	/tmp/sandbox3826064011/prog.go:17 +0x165

类型选择

类型选择是一种按顺序从几个类型断言中选择分支的结构。

类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。

switch v := i.(type) {
case T:
    // v 的类型为 T
case S:
    // v 的类型为 S
default:
    // 没有匹配,v 与 i 的类型相同
}

此选择语句判断接口值 i 保存的值类型是 T 还是 S。在 T 或 S 的情况下,变量 v 会分别按 T 或 S 类型保存 i 拥有的值。在默认(即没有匹配)的情况下,变量 v 与 i 的接口类型和值相同。

package main

import "fmt"

func do(i interface{}) {
	switch v := i.(type) {
	case int:
		fmt.Printf("Twice %v is %v\n", v, v*2)
	case string:
		fmt.Printf("%q is %v bytes long\n", v, len(v))
	default:
		fmt.Printf("I don't know about type %T!\n", v)
	}
}

func main() {
	do(21)
	do("hello")
	do(true)
}
Twice 21 is 42
"hello" is 5 bytes long
I don't know about type bool!

Stringer

fmt 包中定义的 Stringer 是最普遍的接口之一。

type Stringer interface {
    String() string
}

Stringer 是一个可以用字符串描述自己的类型。fmt 包(还有很多包)都通过此接口来打印值。

package main

import "fmt"

type Person struct {
	Name string
	Age  int
}

func (p Person) String() string {
	return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}

func main() {
	a := Person{"Arthur Dent", 42}
	z := Person{"Zaphod Beeblebrox", 9001}
	fmt.Println(a, z)
}

并发

Go程

Go 程(goroutine)是由 Go 运行时管理的轻量级线程。

package main

import (
	"fmt"
	"time"
)

func say(s string) {
	for i := 0; i < 5; i++ {
		time.Sleep(100 * time.Millisecond)
		fmt.Println(s)
	}
}

func main() {
	go say("world")
	say("hello")
}

下面为某一次的输出结果

world
hello
hello
world
world
hello
hello
world
world
hello

信道

信道是带有类型的管道,你可以通过它用信道操作符 <- 来发送或者接收值。

ch <- v    // 将 v 发送至信道 ch。
v := <-ch  // 从 ch 接收值并赋予 v。

(“箭头”就是数据流的方向。)

和映射与切片一样,信道在使用前必须创建:

ch := make(chan int)

默认情况下,发送和接收操作在另一端准备好之前都会阻塞。这使得 Go 程可以在没有显式的锁或竞态变量的情况下进行同步。

以下示例对切片中的数进行求和,将任务分配给两个 Go 程。一旦两个 Go 程完成了它们的计算,它就能算出最终的结果。

package main

import "fmt"

func sum(s []int, c chan int) {
	sum := 0
	for _, v := range s {
		sum += v
	}
	c <- sum // 将和送入 c
}

func main() {
	s := []int{7, 2, 8, -9, 4, 0}

	c := make(chan int)
	go sum(s[:len(s)/2], c)
	go sum(s[len(s)/2:], c)
	x, y := <-c, <-c // 从 c 中接收

	fmt.Println(x, y, x+y)
}

带缓冲的信道

信道可以是带缓冲的。将缓冲长度作为第二个参数提供给 make 来初始化一个带缓冲的信道:

ch := make(chan int, 100)

仅当信道的缓冲区填满后,向其发送数据时才会阻塞。当缓冲区为空时,接受方会阻塞。

修改示例填满缓冲区,然后看看会发生什么。

参考

[1]【尚硅谷】Golang入门到实战教程
[2] 《A Tour of Go》

你可能感兴趣的:(Golang,golang,开发语言,后端)