我们模拟实现是为了加深对这个容器的理解,不是为了造更好的轮子。
// vector.h
#pragma once
#include
// 模拟实现 -- 加深对这个容器理解,不是为了造更好的轮子
namespace Yuucho
{
template<class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
vector()
:_start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{}
// 迭代器区间来构造,用模板的原因是存储的类型多种多样
template <class InputIterator>
vector(InputIterator first, InputIterator last)
: _start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
while (first != last)
{
push_back(*first);
++first;
}
}
// 用n个T去构造,但是会隐藏匹配问题
vector(size_t n, const T& val = T())
: _start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
reserve(n);
for (size_t i = 0; i < n; ++i)
{
push_back(val);
}
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endofstorage, v._endofstorage);
}
//拷贝构造函数
vector(const vector<T>& v)
: _start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
vector<T> tmp(v.begin(), v.end());
swap(tmp);
}
// 拷贝赋值函数
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
// 资源管理
~vector()
{
if(_start)
{
delete[] _start;
_start = _finish = _endofstorage = nullptr;
}
}
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin() const
{
return _start;
}
const_iterator end() const
{
return _finish;
}
// 默认是内联,频繁调用不用担心栈帧消耗
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _endofstorage - _start;
}
void reserve(size_t n)
{
}
//void resize(size_t n, const T& val = T())
void resize(size_t n, T val = T())
{
}
void push_back(const T& x)
{
}
void pop_back()
{
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos) const
{
assert(pos < size());
return _start[pos];
}
iterator insert(iterator pos, const T& x)
{
}
void clear()
{
_finish = _start;
}
private:
iterator _start;
iterator _finish;
iterator _endofstorage;
};
}
跟string的扩容思路一样。一般不考虑缩容(n 错误代码: 修正后的代码: resize是开空间+初始化,size_type就是size_t,value_type就是T。 C++模板出来了语法就必须支持内置类型的默认构造、析构函数。 思路与string一样 复用insert: 复用erase: 库里面的insert是带返回值的,我们先不管,先写一个没有返回值的看看。 (1) 迭代器失效第一种场景 yeahbaby,现在我们就可以来讲讲迭代器失效的问题了,嘿嘿嘿。 如果插入时没有扩容,ok,那还好说,没有问题。 如果扩容了,reserve会去更新 ok,那我们在扩容时更新一下pos: (2)另一种场景 运行结果 导致断言错误的原因是啥?为什么不能在2的前面插入20? 同样的道理,虽然我们修正了pos,但是我们是值传递,形参不会改变实参。所以it仍然是野指针。在VS环境下,会用断言暴力检查出来的。在Linux环境下,检查不出来这种情况,甚至对原来的it仍然可读可写。 有小伙伴就会说了,传引用不就行了吗? 我们是不会用引用的,官方库也没有用引用。因为我要传的是像 更悲伤的是就算我提前把空间给你开好,保证插入时不需要扩容还是会出现问题。因为insert是在2之前插入20,++it后it仍指向2,这样就导致不断地在2之前插入20。这也是迭代器失效的一种场景。 修正后的代码: 用返回值解决,官方库里返回的是指向新插入的第一个元素的迭代器。 那我们也这样返回。 此时我们这样使用就行: 运行结果 一般vector删除数据,都不考虑缩容的方案。 缩容方案:size() < capacity()/2时,可以考虑开一个size()大小的空间,拷贝数据,释放旧空间。 缩容方案本质是时间换空间。一般设计都不会考虑缩容,因为实际比较关注时间效率,不关注空间效率,因为现在硬件设备空间都比较大,空间存储也比较便宜。 我们这里不考虑缩容方案。 erase返回最后一个被释放元素的后一个元素的新位置。 VS中的vector也没有考虑缩容方案,但是它对pos(如果缩容,pos就是野指针)进行了断言检查,不允许访问和写入。 (1)erase迭代器的失效都是意义变了,或者不在有效访问数据的范围。 (2)一般不会使用缩容的方案,那么erase的失效,一般也不存在野指针的失效。 erase(pos)以后pos失效了,pos的意义变了,但是不同平台下面对访问pos的反应不一样。VS会强制检查,Linux则没有严格的检查机制。我们用的时候一定要小心,统一以失效角度去看待。 erase迭代器意义变了的场景(假设我们要删除容器中的偶数): 迭代器区间的构造函数的参数要求是同类型的,而第一个构造函数的第一个参数是size_t,int会涉及隐式类型转换。所以参数为(10,2)的会匹配迭代器区间的构造函数,而参数为(10, ‘x’)的会匹配第一个构造函数。 这里就会导致int类型被当作迭代器解引用,本质上是发生了构造函数的错配问题。 解决方法: 源码是通过再写一个第一个参数为int类型的构造函数来解决的。 以杨辉三角为例: 我们自己写的vector去跑这里的杨辉三角会出现问题。 为了方便大家理解,我们把扩容的代码拿下来。 因为push_back我们第一次开的空间是4,所以前4次的push_back都不会有问题,第5次push_back去调用reserve时就会出现问题。 因为扩容的时候tmp会把前4组的 解决方法: 拷贝的时候不要用memcpy,使用拷贝赋值函数来完成,因为赋值函数会帮我们完成深拷贝。void reserve(size_t n)
{
// 一般不考虑缩容(n
void reserve(size_t n)
{
// 记录size
size_t sz = size();
if(n > capacity())
{
T* tmp = new T[n];
if(_start)
{
//memcpy还会隐藏更深层次的深浅拷贝问题,讲解在最后
memcpy(tmp, _start, size()*sizeof(T));
delete[] _start;
}
_start = tmp; // 注意,这里start位置变了
}
// 更新_finish、_endofstorage
_finish = _start + sz;
_endofstorage = _start + n;
}
2.2 resize
int() // 默认构造是0
double() // 默认构造是0.0
int*() // 默认构造是nullptr
//void resize(size_t n, const T& val = T()) 严格的编译器编不过,它认为T是临时对象
// 按照库里的写法
void resize(size_t n, T val = T()) // T类型的匿名对象,默认构造函数很重要,内置类型咋办?
{
if (n > capacity())
{
reserve(n);
}
if (n > size())
{
while (_finish < _start + n)
{
*_finish = val;
++_finish;
}
}
// n < capacity就是删除数据
else
{
_finish = _start + n;
}
}
2.3 push_back
void push_back(const T& x)
{
// 满了先扩容
if(_finish == _endofstorage)
{
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
}
// 插入数据
*_finish = x;
++_finish;
}
void push_back(const T& x)
{
insert(end(), x);
}
2.4 pop_back()
void pop_back()
{
// 如果不为空
if(_finish > _start)
{
--_finish;
}
}
void pop_back()
{
erase(end()-1);
}
2.5 insert
void insert(iterator pos, const T& x)
{
// 检查参数
assert(pos >= _start && pos <= _finish);
// 扩容
if (_finish == _endofstorage)
{
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
}
// 挪动数据
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
}
_start
和_finish
,而不会去更新pos(pos还是会指向旧空间,迭代器发生了野指针问题)。在VS环境下,会用断言暴力检查出来的。在Linux环境下,检查不出来这种情况,甚至对原来的it仍然可读可写。if (_finish == _endofstorage)
{
size_t n = pos - _start;
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
pos = _start + n;
}
void test_vector1()
{
// 在所有的偶数的前面插入2
vector<int> v;
//v.reserve(10);
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
v.push_back(6);
vector<int>::iterator it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
{
it = v.insert(it, 20);
++it;
}
++it;
}
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
}
v.begin()
这样的临时对象怎么办。iterator insert(iterator pos, const T& x)
{
// 检查参数
assert(pos >= _start && pos <= _finish);
// 扩容
// 扩容以后pos就失效了,需要更新一下
if (_finish == _endofstorage)
{
size_t n = pos - _start;
size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newCapacity);
pos = _start + n;
}
// 挪动数据
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
return pos;
}
while (it != v.end())
{
if(*it % 2 == 0)
{
// 返回新插入的第一个元素的迭代器
it = v.insert(it, 20);
//还是指向2
++it;
}
// 指向2的后一位
++it;
}
2.6 erase
iterator erase(iterator pos)
{
assert(pos >= _start && pos < _finish);
iterator it = pos + 1;
while (it != _finish)
{
*(it - 1) = *it;
++it;
}
//erase最后一个数据,则pos==_finish,pos真失效了,但仍然属于这个容器
--_finish;
return pos;
}
2.7 构造函数的匹配问题
vector(int n, const T& val = T())
: _start(nullptr)
, _finish(nullptr)
, _endofstoage(nullptr)
{
reserve(n);
for (int i = 0; i < n; ++i)
{
push_back(val);
}
}
3 更深层次的深浅拷贝问题
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> vv;
// 先开辟杨辉三角的空间
vv.resize(numRows);
//初始化每一行
for(size_t i = 0; i < numRows; ++i)
{
//每行个数依次递增
vv[i].resize(i+1, 0);
// 每一行的第一个和最后一个都是1
vv[i][0] = 1;
vv[i][vv[i].size()-1] = 1;
}
for(size_t i = 0; i < vv.size(); ++i)
{
for(size_t j = 0; j < vv[i].size(); ++j)
{
if(vv[i][j] == 0)
{
//之间位置等于上一行j-1和j个相加
vv[i][j] = vv[i-1][j-1] + vv[i-1][j];
}
}
}
return vv;
}
};
void test_vector2()
{
vector<vector<int>> ret = Solution().generate(5);
for (size_t i = 0; i < ret.size(); ++i)
{
for (size_t j = 0; j < ret[i].size(); ++j)
{
cout << ret[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
void reserve(size_t n)
{
// 记录size
size_t sz = size();
if(n > capacity())
{
T* tmp = new T[n];
if(_start)
{
memcpy(tmp, _start, size()*sizeof(T));
delete[] _start;
}
_start = tmp; // 注意,这里start位置变了
}
// 更新_finish、_endofstorage
_finish = _start + sz;
_endofstorage = _start + n;
}
vector
会去调用拷贝构造,拷贝构造又去调用了迭代器的区间构造函数,迭代器区间构造函数又去调用了push_back,push_back又去调用了reserve。vector
数据memcpy下来,而memcpy是浅拷贝,拷贝下来的数据和原来的数据指向的是同一块空间。关键是memcpy后又delete了旧空间,导致插入第5个vector
时前4组的数据被释放了,成了野指针。void reserve(size_t n)
{
// 记录size
size_t sz = size();
if(n > capacity())
{
T* tmp = new T[n];
if(_start)
{
//防止浅拷贝问题3
for (size_t i = 0; i < size(); ++i)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tmp; // 注意,这里start位置变了
}
// 更新_finish、_endofstorage
_finish = _start + sz;
_endofstorage = _start + n;
}