面试题:集群高并发环境下如何保证分布式唯一全局ID生成?

文章目录

  • 前言
  • 问题
    • 为什么需要分布式全局唯一ID以及分布式ID的业务需求
    • ID生成规则部分硬性要求
    • ID号生成系统的可用性要求
  • 一般通用解决方案
    • UUID
    • 数据库自增主键
  • 集群分布式集群
  • 基于Redis生成全局ID策略
    • 单机版
    • 集群分布式
  • 雪花算法
    • 什么是雪花算法
    • 结构
    • 实现
    • SpringBoot整合雪花算法


前言

系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。

不足之处,请多多指教!!

问题

为什么需要分布式全局唯一ID以及分布式ID的业务需求

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识,如在美团点评的金融、支付、餐饮、酒店

猫眼电影等产品的系统中数据逐渐增长,对数据库分库分表后需要有一个唯一ID来标识一条数据或信息;

特别Ian的订单、骑手、优惠券都需要有唯一ID做标识

此时一个能够生成全局唯一ID的系统是非常必要的

面试题:集群高并发环境下如何保证分布式唯一全局ID生成?_第1张图片

ID生成规则部分硬性要求

  • 全局唯一
  • 趋势递增
    在MySQL的InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用Btree的数据结构来存储索引,在主键的选择上面我们应该尽量使用有序的主键保证写入性能
  • 单调递增
    保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求
  • 信息安全
    如果ID是连续,恶意用户的爬取工作就非常容易做了,直接按照顺序下载指定URL即可,如果是订单号就危险了,竞争对手可以直接知道我们一天的单量,所以在一些应用场景下,需要ID无规则不规则,让竞争对手不好猜
  • 含时间戳
    一样能够快速在开发中了解这个分布式ID什么时候生成的

ID号生成系统的可用性要求

  • 高可用
    发布一个获取分布式ID请求,服务器就要保证99.999%的情况下给我创建一个唯一分布式ID
  • 低延迟
    发一个获取分布式ID的请求,服务器就要快,极速
  • 高QPS
    例如并发一口气10万个创建分布式ID请求同时杀过来,服务器要顶得住且一下子成功创建10万个分布式ID

一般通用解决方案

UUID

UUID.randomUUID() , UUID的标准型包含32个16进制数字,以连字号分为五段,形式为 8-4-4-4-12的36个字符,性能非常高,本地生成,没有网络消耗。

存在问题
入数据库性能差,因为UUID是无序的

  • 无序,无法预测他的生成顺序,不能生成递增有序的数字

首先分布式id一般都会作为逐渐,但是按照mysql官方推荐主键尽量越短越好,UUID每一个都很长,所以不是很推荐。

  • 主键,ID作为主键时,在特定的环境下会存在一些问题

比如做DB主键的场景下,UUID就非常不适用MySQL官方有明确的说明

  • 索引,B+树索引的分裂

既然分布式ID是主键,然后主键是包含索引的,而mysql的索引是通过B+树来实现的,每一次新的UUID数据的插入,为了查询的优化,都会对索引底层的B+树进行修改,因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的B+树进行很大的修改,这一点很不好,插入完全无序,不但会导致一些中间节点产生分裂,也会白白创造出很多不饱和的节点,这样大大降低了数据库插入的性能。

UUID只能保证全局唯一性,不满足后面的趋势递增,单调递增。

数据库自增主键

单机

在分布式里面,数据库的自增ID机制的主要原理是:数据库自增ID和mysql数据库的replace into实现的,这里的replace into跟insert功能 类似,不同点在于:replace into首先尝试插入数据列表中,如果发现表中已经有此行数据(根据主键或唯一索引判断)则先删除,在插入,否则直接插入新数据。
在这里插入图片描述

REPLACE into t_test(stub) values('b');  
select LAST_INSERT_ID();  

我们每次插入的时候,发现都会把原来的数据给替换,并且ID也会增加

这就满足了

  • 递增性
  • 单调性
  • 唯一性

在分布式情况下,并且并发量不多的情况,可以使用这种方案来解决,获得一个全局的唯一ID

集群分布式集群

那数据库自增ID机制适合做分布式ID吗?答案是不太适合

系统水平扩展比较困难,比如定义好步长和机器台数之后,如果要添加机器该怎么办,假设现在有一台机器发号是:1,2,3,4,5,(步长是1),这个时候需要扩容机器一台,可以这样做:把第二胎机器的初始值设置得比第一台超过很多,貌似还好,但是假设线上如果有100台机器,这个时候扩容要怎么做,简直是噩梦,所以系统水平扩展方案复杂难以实现。

数据库压力还是很大,每次获取ID都得读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低和高QPS的规则(在高并发下,如果都去数据库里面获取ID,那是非常影响性能的)

基于Redis生成全局ID策略

单机版

因为Redis是单线程,天生保证原子性,可以使用原子操作INCR和INCRBY来实现

INCRBY:设置增长步长

集群分布式

注意:在Redis集群情况下,同样和MySQL一样需要设置不同的增长步长,同时key一定要设置有效期,可以使用Redis集群来获取更高的吞吐量。

假设一个集群中有5台Redis,可以初始化每台Redis的值分别是 1,2,3,4,5 , 然后设置步长都是5

各个Redis生成的ID为:

A1 6 11 16 21  
B2 7 12 17 22  
C3 8 13 18 23  
D4 9 14 19 24  
E5 10 15 20 25  

但是存在的问题是,就是Redis集群的维护和保养比较麻烦,配置麻烦。因为要设置单点故障,哨兵值守

但是主要是的问题就是,为了一个ID,却需要引入整个Redis集群,有种杀鸡焉用牛刀的感觉。

雪花算法

什么是雪花算法

Twitter的分布式自增ID算法,Snowflake

最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统)因为Cassandra没有顺序ID生成机制,所有开发了这样一套全局唯一ID生成服务。

Twitter的分布式雪花算法SnowFlake,经测试SnowFlake每秒可以产生26万个自增可排序的ID

  • twitter的SnowFlake生成ID能够按照时间有序生成

  • SnowFlake算法生成ID的结果是一个64Bit大小的整数,为一个Long型(转换成字符串后长度最多19)

  • 分布式系统内不会产生ID碰撞(由datacenter 和 workerID做区分)并且效率较高

分布式系统中,有一些需要全局唯一ID的场景,生成ID的基本要求

  • 在分布式环境下,必须全局唯一性

  • 一般都需要单调递增,因为一般唯一ID都会存在数据库,而InnoDB的特性就是将内容存储在主键索引上的叶子节点,而且是从左往右递增的,所有考虑到数据库性能,一般生成ID也最好是单调递增的。为了防止ID冲突可以使用36位UUID,但是UUID有一些缺点,首先是它相对比较长,并且另外UUID一般是无序的

  • 可能还会需要无规则,因为如果使用唯一ID作为订单号这种,为了不让别人知道一天的订单量多少,就需要这种规则

结构

雪花算法的几个核心组成部分

面试题:集群高并发环境下如何保证分布式唯一全局ID生成?_第2张图片
在Java中64bit的证书是long类型,所以在SnowFlake算法生成的ID就是long类存储的

第一部分

二进制中最高位是符号位,1表示负数,0表示正数。生成的ID一般都是用整数,所以最高位固定为0。

第二部分

第二部分是41bit时间戳位,用来记录时间戳,毫秒级

41位可以表示 2^41 -1 个数字

如果只用来表示正整数,可以表示的范围是:0 - 2^41 -1,减1是因为可以表示的数值范围是从0开始计算的,而不是从1。

也就是说41位可以表示 2^41 - 1 毫秒的值,转换成单位年则是 69.73年

第三部分

第三部分为工作机器ID,10Bit用来记录工作机器ID

可以部署在2^10 = 1024个节点,包括5位 datacenterId(数据中心,机房) 和 5位 workerID(机器码)

5位可以表示的最大正整数是 2 ^ 5 = 31个数字,来表示不同的数据中心 和 机器码

第四部分

12位bit可以用来表示的正整数是 2^12 = 4095,即可以用0 1 2 … 4094 来表示同一个机器同一个时间戳内产生的4095个ID序号。

SnowFlake可以保证

所有生成的ID按时间趋势递增

整个分布式系统内不会产生重复ID,因为有datacenterId 和 workerId来做区分

实现

雪花算法是由scala算法编写的,有人使用java实现。

/**  
 * twitter的snowflake算法 -- java实现  
 *   
 * @author beyond  
 */  
public class SnowFlake {  
  
    /**  
     * 起始的时间戳  
     */  
    private final static long START_STMP = 1480166465631L;  
  
    /**  
     * 每一部分占用的位数  
     */  
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数  
    private final static long MACHINE_BIT = 5;   //机器标识占用的位数  
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数  
  
    /**  
     * 每一部分的最大值  
     */  
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);  
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);  
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);  
  
    /**  
     * 每一部分向左的位移  
     */  
    private final static long MACHINE_LEFT = SEQUENCE_BIT;  
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;  
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;  
  
    private long datacenterId;  //数据中心  
    private long machineId;     //机器标识  
    private long sequence = 0L; //序列号  
    private long lastStmp = -1L;//上一次时间戳  
  
    public SnowFlake(long datacenterId, long machineId) {  
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {  
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");  
        }  
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {  
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");  
        }  
        this.datacenterId = datacenterId;  
        this.machineId = machineId;  
    }  
  
    /**  
     * 产生下一个ID  
     *  
     * @return  
     */  
    public synchronized long nextId() {  
        long currStmp = getNewstmp();  
        if (currStmp < lastStmp) {  
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");  
        }  
  
        if (currStmp == lastStmp) {  
            //相同毫秒内,序列号自增  
            sequence = (sequence + 1) & MAX_SEQUENCE;  
            //同一毫秒的序列数已经达到最大  
            if (sequence == 0L) {  
                currStmp = getNextMill();  
            }  
        } else {  
            //不同毫秒内,序列号置为0  
            sequence = 0L;  
        }  
  
        lastStmp = currStmp;  
  
        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分  
                | datacenterId << DATACENTER_LEFT       //数据中心部分  
                | machineId << MACHINE_LEFT             //机器标识部分  
                | sequence;                             //序列号部分  
    }  
  
    private long getNextMill() {  
        long mill = getNewstmp();  
        while (mill <= lastStmp) {  
            mill = getNewstmp();  
        }  
        return mill;  
    }  
  
    private long getNewstmp() {  
        return System.currentTimeMillis();  
    }  
  
    public static void main(String[] args) {  
        SnowFlake snowFlake = new SnowFlake(2, 3);  
  
        for (int i = 0; i < (1 << 12); i++) {  
            System.out.println(snowFlake.nextId());  
        }  
  
    }  
}  

工程落地经验

hutools工具包
地址:https://github.com/looly/hutool

SpringBoot整合雪花算法

引入hutool工具类

<dependency>  
    <groupId>cn.hutool</groupId>  
    <artifactId>hutool-all</artifactId>  
    <version>5.3.1</version>  
</dependency>  

整合

/**  
 * 雪花算法  
 */  
public class SnowFlakeDemo {  
    private long workerId = 0;  
    private long datacenterId = 1;  
    private Snowflake snowFlake = IdUtil.createSnowflake(workerId, datacenterId);  
  
    @PostConstruct  
    public void init() {  
        try {  
            // 将网络ip转换成long  
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());  
        } catch (Exception e) {  
            e.printStackTrace();  
        }  
    }  
  
    /**  
     * 获取雪花ID  
     * @return  
     */  
    public synchronized long snowflakeId() {  
        return this.snowFlake.nextId();  
    }  
  
    public synchronized long snowflakeId(long workerId, long datacenterId) {  
        Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);  
        return snowflake.nextId();  
    }  
  
    public static void main(String[] args) {  
        SnowFlakeDemo snowFlakeDemo = new SnowFlakeDemo();  
        for (int i = 0; i < 20; i++) {  
            new Thread(() -> {  
                System.out.println(snowFlakeDemo.snowflakeId());  
            }, String.valueOf(i)).start();  
        }  
    }  
}  

得到结果

1251350711346790400  
1251350711346790402  
1251350711346790401  
1251350711346790403  
1251350711346790405  
1251350711346790404  
1251350711346790406  
1251350711346790407  
1251350711350984704  
1251350711350984706  
1251350711350984705  
1251350711350984707  
1251350711350984708  
1251350711350984709  
1251350711350984710  
1251350711350984711  
1251350711350984712  
1251350711355179008  
1251350711355179009  
1251350711355179010  

优点

  • 毫秒数在高维,自增序列在低位,整个ID都是趋势递增的

  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的

  • 可以根据自身业务特性分配bit位,非常灵活

缺点

  • 依赖机器时钟,如果机器时钟回拨,会导致重复ID生成

  • 在单机上是递增的,但由于涉及到分布式环境,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况,此缺点可以认为无所谓,一般分布式ID只要求趋势递增,并不会严格要求递增,90%的需求只要求趋势递增。

其它补充
为了解决时钟回拨问题,导致ID重复,后面有人专门提出了解决的方案

  • 百度开源的分布式唯一ID生成器 UidGenerator

  • Leaf - 美团点评分布式ID生成系统

你可能感兴趣的:(面试题,分布式)