卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,是处理具有类似网格结构的数据的强大工具,例如图像和声音。CNN主要用于图像识别、语音识别、自然语言处理等领域,是目前计算机视觉领域最有效的算法之一。
卷积神经网络的主要特点是局部连接、权值共享和池化。局部连接意味着每个神经元仅与输入数据的一小部分相连;权值共享意味着所有的神经元使用相同的权值矩阵进行卷积计算;池化则是在卷积计算之后对输出进行降采样。这些特性使得CNN非常适合处理图像数据。
CNN的结构通常由多个卷积层、池化层和全连接层组成,其中卷积层和池化层用于提取图像的特征,全连接层则用于将这些特征映射到输出结果上。在训练过程中,CNN通过反向传播算法更新权值矩阵,使得网络能够自动学习到最适合任务的特征表示。在测试过程中,CNN通过前向传播算法将输入数据传入网络中,并得到输出结果。
CNN的应用非常广泛,例如人脸识别、物体识别、图像分类、图像分割、目标检测等。在物体识别和图像分类任务中,CNN通常使用ImageNet数据集进行训练,该数据集包含数百万张图像和数千个类别,是计算机视觉领域最大的数据集之一。在目标检测任务中,CNN通常使用Faster R-CNN、YOLO、SSD等网络结构,将物体位置和类别同时预测出来。
总的来说,卷积神经网络是一种非常强大的深度学习算法,具有优秀的图像处理能力,但在实际应用过程中也存在一些问题,例如训练时间长、需要更多的计算资源和数据集等。随着技术的不断进步和发展,相信CNN在未来会得到更广泛的应用。
# 导入相关库
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
Using TensorFlow backend.
# 导入数据集
train_X, train_y = mnist.load_data()[0]
train_X, train_y
(array([[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
...,
[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
[[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]]], dtype=uint8),
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8))
# 训练集
train_X = train_X.reshape(-1, 28 ,28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)
# 构造神经网络
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])
# 开始训练
batch_size = 100
epochs = 1
model.fit(train_X, train_y, batch_size=batch_size, epochs=epochs)
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
Epoch 1/1
60000/60000 [==============================] - 190s 3ms/step - loss: 0.2228 - accuracy: 0.9316
# 测试准确率
test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
10000/10000 [==============================] - 9s 919us/step
loss:0.0467 accuracy:0.9844
序号 | 文章目录 | 直达链接 |
---|---|---|
1 | 波士顿房价预测 | https://want595.blog.csdn.net/article/details/132181950 |
2 | 鸢尾花数据集分析 | https://want595.blog.csdn.net/article/details/132182057 |
3 | 特征处理 | https://want595.blog.csdn.net/article/details/132182165 |
4 | 交叉验证 | https://want595.blog.csdn.net/article/details/132182238 |
5 | 构造神经网络示例 | https://want595.blog.csdn.net/article/details/132182341 |
6 | 使用TensorFlow完成线性回归 | https://want595.blog.csdn.net/article/details/132182417 |
7 | 使用TensorFlow完成逻辑回归 | https://want595.blog.csdn.net/article/details/132182496 |
8 | TensorBoard案例 | https://want595.blog.csdn.net/article/details/132182584 |
9 | 使用Keras完成线性回归 | https://want595.blog.csdn.net/article/details/132182723 |
10 | 使用Keras完成逻辑回归 | https://want595.blog.csdn.net/article/details/132182795 |
11 | 使用Keras预训练模型完成猫狗识别 | https://want595.blog.csdn.net/article/details/132243928 |
12 | 使用PyTorch训练模型 | https://want595.blog.csdn.net/article/details/132243989 |
13 | 使用Dropout抑制过拟合 | https://want595.blog.csdn.net/article/details/132244111 |
14 | 使用CNN完成MNIST手写体识别(TensorFlow) | https://want595.blog.csdn.net/article/details/132244499 |
15 | 使用CNN完成MNIST手写体识别(Keras) | https://want595.blog.csdn.net/article/details/132244552 |
16 | 使用CNN完成MNIST手写体识别(PyTorch) | https://want595.blog.csdn.net/article/details/132244641 |
17 | 使用GAN生成手写数字样本 | https://want595.blog.csdn.net/article/details/132244764 |
18 | 自然语言处理 | https://want595.blog.csdn.net/article/details/132276591 |