def createTypeTracker(trackerType):
读取视频第一帧,选择跟踪的目标
ok, frame = video.read()
bbox = cv2.selectROI(frame, False)
初始化跟踪器
tracker_type = ‘MIL’
tracker = createTypeTracker(tracker_type)
ok = tracker.init(frame, bbox)
随着视频进行更新跟踪
ok, bbox = tracker.update(frame)
import cv2
import sys
import numpy as np
# 创建一个跟踪器,algorithm: KCF、CSRT、DaSiamRPN、GOTURM、MIL
trackerTypes = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']
def createTypeTracker(trackerType):
if trackerType == trackerTypes[0]:
tracker = cv2.legacy.TrackerBoosting_create()
elif trackerType == trackerTypes[1]:
tracker = cv2.TrackerMIL_create()
elif trackerType == trackerTypes[2]:
tracker = cv2.legacy.TrackerKCF_create()
elif trackerType == trackerTypes[3]:
tracker = cv2.legacy.TrackerTLD_create()
elif trackerType == trackerTypes[4]:
tracker = cv2.legacy.TrackerMedianFlow_create()
elif trackerType == trackerTypes[5]: # 暂时存在问题
tracker = cv2.TrackerGOTURN_create()
elif trackerType == trackerTypes[6]:
tracker = cv2.legacy.TrackerMOSSE_create()
elif trackerType == trackerTypes[7]:
tracker = cv2.legacy.TrackerCSRT_create()
else:
tracker = None
return tracker
videoPth = 'D:/workspace_all/pyCharm/BicycleTrackerByOpenCV/video2.mp4'
if __name__ == '__main__':
# 经测试CSRT效果最好
tracker_type = 'CSRT'
tracker = createTypeTracker(tracker_type)
# 读取视频
video = cv2.VideoCapture(videoPth)
#fps = video.get(cv2.CAP_PROP_FPS)
# 用于展示
cv2.namedWindow("test", 0)
cv2.resizeWindow("test", 1200, 900) # 设置窗口的长和宽
# 获取视频的帧率和尺寸
fps = video.get(cv2.CAP_PROP_FPS)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 保存跟踪视频
output = cv2.VideoWriter('D:/desktop/output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
# 如果视频没有打开,退出。
if not video.isOpened():
print
"Could not open video"
sys.exit()
# 读第一帧。
ok, frame = video.read()
#cv2.imshow('test', frame)
if not ok:
print('Cannot read video file')
sys.exit()
# 定义一个初始边界框
bbox = (287, 23, 86, 320)
# 选择一个不同的边界框
bbox = cv2.selectROI('test', frame, False)
# 用第一帧和包围框初始化跟踪器
ok = tracker.init(frame, bbox)
while True:
# 读取一个新的帧
ok, frame = video.read()
if not ok:
break
# 启动计时器
timer = cv2.getTickCount()
# 更新跟踪器
ok, bbox = tracker.update(frame)
# 计算帧率(FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
# 绘制包围框
if ok:
# 跟踪成功
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (0, 0, 255), 2, 3)
else:
# 跟踪失败
cv2.putText(frame, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
# 在帧上显示跟踪器类型名字
cv2.putText(frame, tracker_type + " Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# 在帧上显示帧率FPS
cv2.putText(frame, "FPS : " + str(int(fps)), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# 显示结果
# cv2.imshow("Tracking", frame)
cv2.imshow('test', frame)
# 保存视频
output.write(frame)
# 按ESC键退出
k = cv2.waitKey(1) & 0xff
if k == 27: break
output.release()
https://blog.csdn.net/taotao_guiwang/article/details/133301116?spm=1001.2014.3001.5501
https://blog.csdn.net/weixin_45823221/article/details/128470499