- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- 递推和递归_一文学会递归递推
HR刀姐
递推和递归
递归算法和递推算法无论是在ACM竞赛还是项目工程上都有着极为广泛的应用,但想要完全掌握两者的思想并不容易,对于刚刚接触编程的人来说更是这样,我在初次接触递归递推时就吃了很多的苦头,除了当时对编程语言不太熟悉之外,最大的原因就是难以理解其中的思想,本文将二者结合代码分别讲解,力求以"理论+实践"的方式使读者明白两种算法。一箭双雕,一文双递。一.递归和递推的区别学习递归递推的一个容易遇到的问题就是混淆
- ZooKeeper学习总结(1)——ZooKeeper入门介绍
一杯甜酒
ZooKeeper学习总结Zookeeper
1.概述Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务、名字服务、分布式同步、组服务等。它有如下的一些特点:简单Zookeeper的核心是一个精简的文件系统,它支持一些简单的操作和一些抽象操作,例如,排序和通知。丰富Zookeeper的原语操作是很丰富的,可实现一些协调数据结构和协议。例如,分布式队列、分布式锁和一组同级别节点中的“领导者选举
- Zookeeper+kafka学习笔记
CHR_YTU
Zookeeper
Zookeeper是Apache的一个java项目,属于Hadoop系统,扮演管理员的角色。配置管理分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。Zookeeper提供了这样的一种服务:一种集
- FastAPI 自定义参数验证器完全指南:从基础到高级实战
qcidyu
文章归档安全性数据校验Web开发API设计Field函数参数验证FastAPI
title:FastAPI自定义参数验证器完全指南:从基础到高级实战date:2025/3/11updated:2025/3/11author:cmdragonexcerpt:本教程深入探讨FastAPI中自定义参数验证器的使用,特别是通过Field函数进行数据校验。从基础概念到高级用法,通过详细的代码示例、课后测验和常见错误解决方案,帮助初学者快速掌握FastAPI中自定义参数验证器的核心知识。
- autoMate - AI实现电脑任务自动化的本地工具
小众AI
AI开源人工智能自动化运维
GitHub:https://github.com/yuruotong1/autoMate更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIautoMate是一款由开源开发的本地自动化工具,以AI+RPA(人工智能+机器人流程自动化)为核心特色。它将大型语言模型的智能理解与RPA的流程执行能力结合,用户只需用自然语言描述任务,如“整理桌面文件”或“生成周报”,即可
- YOLO训练指南(以V3为例)
niuTaylor
YOLO目标检测深度学习机器学习
YOLO训练指南(以V3为例)前言了解yolo3https://cloud.tencent.com/developer/news/76803https://www.bilibili.com/video/av77670746/1.总教程★★★https://blog.csdn.net/USTCsunyue/article/details/93648307★★★★https://blog.csdn.n
- ROS安装以及程序运行问题总结
niuTaylor
ROS装机&刷机linux
1.总教程https://blog.csdn.net/qq_41450811/article/details/99079041sudosh-c'./etc/lsb-release&&echo"debhttp://mirrors.ustc.edu.cn/ros/ubuntu/$DISTRIB_CODENAMEmain">/etc/apt/sources.list.d/ros-latest.list'
- Zookeeper【概念(集中式到分布式、什么是分布式 、CAP定理 、什么是Zookeeper、应用场景、为什么选择Zookeeper 、基本概念) 】(一)-全面详解(学习总结---从入门到深化)
童小纯
中间件大全---全面详解zookeeper分布式
作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步如果感觉博主的文章还不错的话,请三连支持一下博主哦博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人目录Zookeeper概念_集中式到分布
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 麒麟arm架构系统_安装nginx-1.27.0_访问500 internal server error nginx解决_13: Permission denied---Linux工作笔记072
添柴程序猿
javanginx-1.27.0nginx最新版安装麒麟v10arm架构麒麟v10安装nginx
[
[email protected]]#wget-chttp://nginx.org/download/nginx-1.27.0.tar.gz--2024-07-0509:47:00--http://nginx.org/download/nginx-1.27.0.tar.gzResolvingnginx.org(nginx.org)...3.125.197.172,52.58.19
- POI 的 Excel 读写操作教程
Kale又菜又爱玩
exceljava
POI的Excel读写操作教程一、POI简介ApachePOI是一款在Java开发中广受欢迎的开源库,主要用于处理各种MicrosoftOffice文件格式,Excel文件便是其中之一。凭借其功能强大的API,POI不仅支持对Excel文件的读取、写入和修改,还为Java开发者在处理Excel相关业务时提供了极大的便利。二、POI的Excel读写操作案例(一)引入依赖在Maven项目中使用POI时
- Netty入门教程
Kale又菜又爱玩
java开发语言
Netty入门教程Netty是一个高性能、低延迟的网络通信框架,广泛应用于高并发、高吞吐量的网络应用程序中。它提供了简洁易用的API,封装了底层的复杂操作,让开发者能够专注于业务逻辑。本文将从基础概念入手,逐步深入Netty的核心组件、使用方法及高级特性,帮助你在生产环境中得心应手地使用Netty。1.什么是Netty?Netty是一个异步、事件驱动的网络通信框架,极大地简化了TCP和UDP网络编
- HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能音视频处理应用开发引言在HarmonyNext生态系统中,ArkTS作为新一代的编程语言,为开发者提供了强大的工具来构建高性能、跨平台的应用。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的音视频处理应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的特性,结合ArkTS的强大功能,实现复杂
- Solana中的程序派生地址(PDAs):是什么,为什么,以及如何?
GTokenTool发币平台
区块链
程序派生地址(PDA)在Solana中的应用:什么、为什么和如何?在学习Solana时,你会经常听到关于程序派生地址(PDAs)的讨论。它们就像这样——强大、多功能,而且最重要的是,稍微被误解。如果你是一个开发者,试图理解它们,不用担心。我们将在本文中一起揭开PDAs的面纱。在本文中,我将从基础开始解释PDAs,假设你刚刚开始接触Solana。因此,不需要任何先前的知识——让我们开始吧。什么是PD
- 从零开始构建大模型(LLM)应用
和老莫一起学AI
人工智能ai大模型语言模型llm自然语言处理学习
大模型(LLM)已经成为当前人工智能的重要部分。但是,在这个领域还没有固定的操作标准,开发者们往往没有明确的指导,需要不断尝试和摸索。在过去两年中,我帮助了许多公司利用LLM来开发了很多创新的应用产品。基于这些经验,我形成了一套实用的方法,并准备在这篇文章中与大家分享。这套方法将提供一些步骤,帮助需要的小伙伴在LLM应用开发的复杂环境中找到方向。从最初的构思到PoC、评估再到产品化,了解如何将创意
- ELK Stack 安装教程 - 构建日志存储告警系统
运维
介绍“ELK”是三个开源项目的首字母缩写,这三个项目分别是:Elasticsearch、Logstash和Kibana。Elasticsearch是一个搜索和分析引擎。Logstash是服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到诸如Elasticsearch等“存储库”中。Kibana则可以让用户在Elasticsearch中使用图形和图表对数据进行可视化。目前最
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- 【LLM】从零开始实现 LLaMA3
FOUR_A
LLM人工智能机器学习大模型llama算法
分词器在这里,我们不会实现一个BPE分词器(但AndrejKarpathy有一个非常简洁的实现)。BPE(BytePairEncoding,字节对编码)是一种数据压缩算法,也被用于自然语言处理中的分词方法。它通过逐步将常见的字符或子词组合成更长的词元(tokens),从而有效地表示文本中的词汇。在自然语言处理中的BPE分词器的工作原理如下:初始化:首先,将所有词汇表中的单词分解为单个字符或符号。例
- Zookeeper学习
种豆走天下
zookeeper学习分布式
Zookeeper是一个开源的分布式协调框架,它主要用于处理分布式系统中的一些常见问题,如同步、配置管理、命名服务和集群管理等。Zookeeper是由Apache提供的,并且广泛应用于各种分布式应用中,特别是在高可用、高可靠性和高性能的系统中。Zookeeper的主要功能分布式协调:Zookeeper提供了协调多个节点(服务器)间行为的机制。例如,分布式锁、选举、配置管理等。命名服务:Zookee
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- GO语言学习笔记
螺旋式上升abc
golang学习笔记
一、viper笔记【七米】https://liwenzhou.com/posts/Go/viper/二、优雅关机和平滑重启https://liwenzhou.com/posts/Go/graceful-shutdown/三、gin使用zaphttps://liwenzhou.com/posts/Go/zap-in-gin/四、flag用于命令行传参https://liwenzhou.com/pos
- 《Quick Start Kubernetes》读后感
python
一、为什么选择这本书?面试的时候经常被问到kubernetes(下称k8s),所以打算学习k8s。看到《QuickStartKubernetes》的作者对自己所写的书持续地更新,被这种认真打动了,外加这本书只有100多页,所以选择了这本书作为入门k8s的教材。二、这本书写了什么?这本书介绍了什么是k8s,k8s的组成结构(controlplanenode,workernode),演示了在Windo
- 有趣的学习Python-第十篇:Python的“魔法宝库”:标准库之旅
王盼达
有趣的学习Python学习python开发语言
Python不仅是一门强大的编程语言,更像是一座充满宝藏的“魔法宝库”,里面装满了各种各样的“魔法工具”(标准库)。这些“魔法工具”可以帮助你轻松地完成各种任务,从文件操作到网络编程,从数据处理到性能优化。接下来,让我们一起探索Python的“魔法宝库”,看看这些“魔法工具”到底有多神奇!10.1操作系统接口:与“魔法世界”互动os模块就像是一个“魔法接口”,可以帮助你与操作系统进行互动。你可以用
- 有趣的学习Python-第八篇:Python的“魔法盾牌”:错误与异常处理
王盼达
有趣的学习Python学习python开发语言
在Python的魔法世界里,即使是经验丰富的魔法师也可能遇到一些“魔法失误”。这些失误分为两种:语法错误和异常。别担心,Python为你准备了一面强大的“魔法盾牌”,帮助你应对这些挑战。8.1语法错误:魔法咒语写错了语法错误就像是你在念魔法咒语时,不小心说错了单词。这是学习Python过程中最常见的问题。比如,你可能忘记在while循环后面加上冒号:whileTrueprint('Hellowor
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- 机器学习(Machine Learning)
七指琴魔御清绝
大数据学习
原文链接:http://blog.csdn.net/zhoubl668/article/details/42921187希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Ada
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟