ElasticSearch深度分页解决方案

文章目录

    • 概要
    • ElasticSearch介绍
    • es分页方法
        • es分页性能对比表
        • 方案对比
    • From/Size参数
    • 深度分页问题
    • Scroll
      • #性能对比
        • 向前翻页
    • 总结
    • 个人思考

概要

好久没更新文章了,最近研究了一下es的深分页解决方案。和大家分享一下,祝大家国庆节快乐。

ElasticSearch介绍

Elasticsearch 是一个分布式、可扩展、实时的搜索与数据分析引擎,在使用过程中,有一些典型的使用场景,比如分页、遍历等。

在使用关系型数据库中,我们被告知要注意甚至被明确禁止使用深度分页,同理,在 Elasticsearch 中,也应该尽量避免使用深度分页。

这篇文章主要介绍 Elasticsearch 中分页相关内容!

es分页方法

  • From/Size参数
  • Scroll
  • Scroll Scan
  • Sliced Scroll
  • Search After
es分页性能对比表
分页方式 1~10 49000~49010 99000~999010
from + size 8ms 30ms 117ms
Scroll 7ms 66ms 36ms
Search After 8ms 8ms 7ms
方案对比
方案 原理 优点 缺点 使用场景
from + size 类似 msql的 limit 0,100; limit from,size 灵活性好,实现简单,适合浅分页 无法实现深度分页问题,当查询数量超过10000就会报错 top10000以内的查询
Scroll 首次查询会在内存中保存一个历史快照以及游标(scroll_id),记录当前消息查询的终止位置,下次查询的时候将基于游标进行消费(不管while语句循环多少次,scrollid在设置的时效内,使用的是同一个),不具备实时性,一般是用于大量数据导出。 适合深分页 无法反应数据的实时性(快照版本),维护成本高,需要维护一个 scroll_id 最适合离线场景,海量数据的导出(比如笔者刚遇到的将es中20w的数据导入到excel),需要查询海量结果集的数据
Search After step1:在查询第1页的时候,设置全局唯一性的字段进行组合排序;step2:查询数据之后,取出最后一笔数据的sort值,传到search_after进行查询;step3:基于上一笔的sort值,查询排在它之后的数据,以此来实现分页 不能够随机跳转分页,只能是一页一页的向后翻(当有新数据进来,也能实时查询到),并且需要至少指定一个唯一不重复字段来排序(一般是_id和时间字段) 海量数据的实时分页 性能最好,适合深分页,能够反映数据的实时变更

From/Size参数

在ES中,分页查询默认返回最顶端的10条匹配hits。

如果需要分页,需要使用from和size参数。

  • from参数定义了需要跳过的hits数,默认为0;

  • size参数定义了需要返回的hits数目的最大值。

一个基本的ES查询语句是这样的:

	POST /my_index/my_type/_search
	{
	    "query": { "match_all": {}},
	    "from": 100,
	    "size":  10
	}

上面的查询表示从搜索结果中取第100条开始的10条数据。

** 那么,这个查询语句在ES集群内部是怎么执行的呢?**

在ES中,搜索一般包括两个阶段,query 和 fetch 阶段,可以简单的理解,query 阶段确定要取哪些doc,fetch 阶段取出具体的 doc。

Query阶段

图片
如上图所示,描述了一次搜索请求的 query 阶段:·
ElasticSearch深度分页解决方案_第1张图片

Client 发送一次搜索请求,node1 接收到请求,然后,node1 创建一个大小为from + size的优先级队列用来存结果,我们管 node1 叫 coordinating node。
coordinating node将请求广播到涉及到的 shards,每个 shard 在内部执行搜索请求,然后,将结果存到内部的大小同样为from + size 的优先级队列里,可以把优先级队列理解为一个包含top N结果的列表。
每个 shard 把暂存在自身优先级队列里的数据返回给 coordinating node,coordinating node 拿到各个 shards 返回的结果后对结果进行一次合并,产生一个全局的优先级队列,存到自身的优先级队列里。
在上面的例子中,coordinating node 拿到(from + size) * 6条数据,然后合并并排序后选择前面的from + size条数据存到优先级队列,以便 fetch 阶段使用。

另外,各个分片返回给 coordinating node 的数据用于选出前from + size条数据,所以,只需要返回唯一标记 doc 的_id以及用于排序的_score即可,这样也可以保证返回的数据量足够小。

coordinating node 计算好自己的优先级队列后,query 阶段结束,进入 fetch 阶段。


Fetch阶段


query 阶段知道了要取哪些数据,但是并没有取具体的数据,这就是 fetch 阶段要做的。
ElasticSearch深度分页解决方案_第2张图片
上图展示了 fetch 过程:

coordinating node 发送 GET 请求到相关shards。
shard 根据 doc 的_id取到数据详情,然后返回给 coordinating node。
coordinating node 返回数据给 Client。
coordinating node 的优先级队列里有from + size 个_doc _id,但是,在 fetch 阶段,并不需要取回所有数据,在上面的例子中,前100条数据是不需要取的,只需要取优先级队列里的第101到110条数据即可。

需要取的数据可能在不同分片,也可能在同一分片,coordinating node 使用 「multi-get」 来避免多次去同一分片取数据,从而提高性能。

「这种方式请求深度分页是有问题的:」

我们可以假设在一个有 5 个主分片的索引中搜索。当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。

现在假设我们请求第 1000 页—结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。

「对结果排序的成本随分页的深度成指数上升。」

「注意1:」

size的大小不能超过index.max_result_window这个参数的设置,默认为10000。

如果搜索size大于10000,需要设置index.max_result_window参数

PUT _settings
{
    "index": {
        "max_result_window": "10000000"
    }
}  

[^1] _doc将在未来的版本移除,详见:
https://www.elastic.co/cn/blog/moving-from-types-to-typeless-apis-in-elasticsearch-7-0
https://elasticsearch.cn/article/158
ElasticSearch深度分页解决方案_第3张图片

深度分页问题

Elasticsearch 的From/Size方式提供了分页的功能,同时,也有相应的限制。

举个例子,一个索引,有10亿数据,分10个 shards,然后,一个搜索请求,from=1000000,size=100,这时候,会带来严重的性能问题:CPU,内存,IO,网络带宽。

在 query 阶段,每个shards需要返回 1000100 条数据给 coordinating node,而 coordinating node 需要接收10 * 1000,100 条数据,即使每条数据只有 _doc _id 和 _score,这数据量也很大了?

「在另一方面,我们意识到,这种深度分页的请求并不合理,因为我们是很少人为的看很后面的请求的,在很多的业务场景中,都直接限制分页,比如只能看前100页。」

比如,有1千万粉丝的微信大V,要给所有粉丝群发消息,或者给某省粉丝群发,这时候就需要取得所有符合条件的粉丝,而最容易想到的就是利用 from + size 来实现,不过,这个是不现实的,这时,可以采用 Elasticsearch 提供的其他方式来实现遍历。

深度分页问题大致可以分为两类:

「随机深度分页:随机跳转页面」
「滚动深度分页:只能一页一页往下查询」
「下面介绍几个官方提供的深度分页方法」

Scroll


Scroll遍历数据


我们可以把scroll理解为关系型数据库里的cursor,因此,scroll并不适合用来做实时搜索,而更适合用于后台批处理任务,比如群发。

这个分页的用法,「不是为了实时查询数据」,而是为了「一次性查询大量的数据(甚至是全部的数据」)。

因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。

但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。

不考虑排序的时候,可以结合SearchType.SCAN使用。

scroll可以分为初始化和遍历两部,初始化时将「所有符合搜索条件的搜索结果缓存起来(注意,这里只是缓存的doc_id,而并不是真的缓存了所有的文档数据,取数据是在fetch阶段完成的)」,可以想象成快照。

在遍历时,从这个快照里取数据,也就是说,在初始化后,对索引插入、删除、更新数据都不会影响遍历结果。

「基本使用」

POST /twitter/tweet/_search?scroll=1m
{
    "size": 100,
    "query": {
        "match" : {
            "title" : "elasticsearch"
        }
    }
}

初始化指明 index 和 type,然后,加上参数 scroll,表示暂存搜索结果的时间,其它就像一个普通的search请求一样。

会返回一个_scroll_id,_scroll_id用来下次取数据用。

「遍历」

POST /_search?scroll=1m
{
    "scroll_id":"XXXXXXXXXXXXXXXXXXXXXXX I am scroll id XXXXXXXXXXXXXXX"
}

这里的scroll_id即 上一次遍历取回的_scroll_id或者是初始化返回的_scroll_id,同样的,需要带 scroll 参数。

重复这一步骤,直到返回的数据为空,即遍历完成。

「注意,每次都要传参数 scroll,刷新搜索结果的缓存时间」。另外,「不需要指定 index 和 type」。

设置scroll的时候,需要使搜索结果缓存到下一次遍历完成,「同时,也不能太长,毕竟空间有限。」

「优缺点」

缺点:

「scroll_id会占用大量的资源(特别是排序的请求)」
同样的,scroll后接超时时间,频繁的发起scroll请求,会出现一些列问题。
「是生成的历史快照,对于数据的变更不会反映到快照上。」
「优点:」

适用于非实时处理大量数据的情况,比如要进行数据迁移或者索引变更之类的。

Scroll Scan
ES提供了scroll scan方式进一步提高遍历性能,但是scroll scan不支持排序,因此scroll scan适合不需要排序的场景

「基本使用」

Scroll Scan 的遍历与普通 Scroll 一样,初始化存在一点差别。

POST /my_index/my_type/_search?search_type=scan&scroll=1m&size=50
{
 "query": { "match_all": {}}
}

需要指明参数:

search_type:赋值为scan,表示采用 Scroll Scan 的方式遍历,同时告诉 Elasticsearch 搜索结果不需要排序。
scroll:同上,传时间。
size:与普通的 size 不同,这个 size 表示的是每个 shard 返回的 size 数,最终结果最大为 number_of_shards * size。
「Scroll Scan与Scroll的区别」

Scroll-Scan结果「没有排序」,按index顺序返回,没有排序,可以提高取数据性能。
初始化时只返回 _scroll_id,没有具体的hits结果
size控制的是每个分片的返回的数据量,而不是整个请求返回的数据量。
Sliced Scroll
如果你数据量很大,用Scroll遍历数据那确实是接受不了,现在Scroll接口可以并发来进行数据遍历了。

每个Scroll请求,可以分成多个Slice请求,可以理解为切片,各Slice独立并行,比用Scroll遍历要快很多倍。

POST /index/type/_search?scroll=1m
{
    "query": { "match_all": {}},
    "slice": {
        "id": 0,
        "max": 5
    }   
}

POST ip:port/index/type/_search?scroll=1m
{
    "query": { "match_all": {}},
    "slice": {
        "id": 1,
        "max": 5
    }   
}

上边的示例可以单独请求两块数据,最终五块数据合并的结果与直接scroll scan相同。

其中max是分块数,id是第几块。


官方文档中建议max的值不要超过shard的数量,否则可能会导致内存爆炸。


Search After
Search_after是 ES 5 新引入的一种分页查询机制,其原理几乎就是和scroll一样,因此代码也几乎是一样的。

「基本使用:」

第一步:

POST twitter/_search
{
    "size": 10,
    "query": {
        "match" : {
            "title" : "es"
        }
    },
    "sort": [
        {"date": "asc"},
        {"_id": "desc"}
    ]
}

返回出的结果信息 :

{
      "took" : 29,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [
          {
            ...
            },
            "sort" : [
              ...
            ]
          },
          {
            ...
            },
            "sort" : [
              124648691,
              "624812"
            ]
          }
        ]
      }
    }

上面的请求会为每一个文档返回一个包含sort排序值的数组。

这些sort排序值可以被用于search_after参数里以便抓取下一页的数据。

比如,我们可以使用最后的一个文档的sort排序值,将它传递给search_after参数:

GET twitter/_search
{
    "size": 10,
    "query": {
        "match" : {
            "title" : "es"
        }
    },
    "search_after": [124648691, "624812"],
    "sort": [
        {"date": "asc"},
        {"_id": "desc"}
    ]
}

若我们想接着上次读取的结果进行读取下一页数据,第二次查询在第一次查询时的语句基础上添加search_after,并指明从哪个数据后开始读取。

「基本原理」

es维护一个实时游标,它以上一次查询的最后一条记录为游标,方便对下一页的查询,它是一个无状态的查询,因此每次查询的都是最新的数据。

由于它采用记录作为游标,因此「SearchAfter要求doc中至少有一条全局唯一变量(每个文档具有一个唯一值的字段应该用作排序规范)」

「优缺点」

「优点:」

无状态查询,可以防止在查询过程中,数据的变更无法及时反映到查询中。
不需要维护scroll_id,不需要维护快照,因此可以避免消耗大量的资源。
「缺点:」

由于无状态查询,因此在查询期间的变更可能会导致跨页面的不一值。
排序顺序可能会在执行期间发生变化,具体取决于索引的更新和删除。
至少需要制定一个唯一的不重复字段来排序。
它不适用于大幅度跳页查询,或者全量导出,对第N页的跳转查询相当于对es不断重复的执行N次search after,而全量导出则是在短时间内执行大量的重复查询。
SEARCH_AFTER不是自由跳转到任意页面的解决方案,而是并行滚动多个查询的解决方案。

总结
分页方式 性能 优点 缺点 场景
from + size 低 灵活性好,实现简单 深度分页问题 数据量比较小,能容忍深度分页问题
scroll 中 解决了深度分页问题 无法反应数据的实时性(快照版本)维护成本高,需要维护一个 scroll_id 海量数据的导出需要查询海量结果集的数据
search_after 高 性能最好不存在深度分页问题能够反映数据的实时变更 实现复杂,需要有一个全局唯一的字段连续分页的实现会比较复杂,因为每一次查询都需要上次查询的结果,它不适用于大幅度跳页查询 海量数据的分页
ES7版本变更
参照:https://www.elastic.co/guide/en/elasticsearch/reference/master/paginate-search-results.html#scroll-search-results

在7.*版本中,ES官方不再推荐使用Scroll方法来进行深分页,而是推荐使用带PIT的search_after来进行查询;

从7.*版本开始,您可以使用SEARCH_AFTER参数通过上一页中的一组排序值检索下一页命中。

使用SEARCH_AFTER需要多个具有相同查询和排序值的搜索请求。

如果这些请求之间发生刷新,则结果的顺序可能会更改,从而导致页面之间的结果不一致。

为防止出现这种情况,您可以创建一个时间点(PIT)来在搜索过程中保留当前索引状态。

POST /my-index-000001/_pit?keep_alive=1m
返回一个PIT ID:
{
  "id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
}

在搜索请求中指定PIT:

GET /_search
{
  "size": 10000,
  "query": {
    "match" : {
      "user.id" : "elkbee"
    }
  },
  "pit": {
     "id":  "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==", 
     "keep_alive": "1m"
  },
  "sort": [ 
    {"@timestamp": {"order": "asc", "format": "strict_date_optional_time_nanos", "numeric_type" : "date_nanos" }}
  ]
}

#性能对比

分别分页获取1 - 10,49000 - 49010,99000 - 99010范围各10条数据(前提10w条),性能大致是这样:
ElasticSearch深度分页解决方案_第4张图片

向前翻页
  • 对于向前翻页,ES中没有相应API,但是根据官方说法(https://github.com/elastic/elasticsearch/issues/29449),ES中的向前翻页问题可以通过翻转排序方式来实现即:

  • 对于某一页,正序search_after该页的最后一条数据id为下一页,则逆序search_after该页的第一条数据id则为上一页。
    国内论坛上,有人使用缓存来解决上一页的问题

总结

  1. 如果数据量小(from+size在10000条内),或者只关注结果集的TopN数据,可以使用from/size 分页,简单粗暴
  2. 数据量大,深度翻页,后台批处理任务(数据迁移)之类的任务,使用 scroll 方式
  3. 数据量大,深度翻页,用户实时、高并发查询需求,使用 search after 方式

个人思考

Scroll和search_after原理基本相同,他们都采用了游标的方式来进行深分页。

这种方式虽然能够一定程度上解决深分页问题。但是,它们并不是深分页问题的终极解决方案,深分页问题 ** 必须避免!! **。

对于Scroll,无可避免的要维护scroll_id和历史快照,并且,还必须保证scroll_id的存活时间,这对服务器是一个巨大的负荷。

对于Search_After,如果允许用户大幅度跳转页面,会导致短时间内频繁的搜索动作,这样的效率非常低下,这也会增加服务器的负荷,同时,在查询过程中,索引的增删改会导致查询数据不一致或者排序变化,造成结果不准确。

Search_After本身就是一种业务折中方案,它不允许指定跳转到页面,而只提供下一页的功能。

Scroll默认你会在后续将所有符合条件的数据都取出来,所以,它只是搜索到了所有的符合条件的doc_id(这也是为什么官方推荐用doc_id进行排序,因为本身缓存的就是doc_id,如果用其他字段排序会增加查询量),并将它们排序后保存在协调节点(coordinate node),但是并没有将所有数据进行fetch,而是每次scroll,读取size个文档,并返回此次读取的最后一个文档以及上下文状态,用以告知下一次需要从哪个shard的哪个文档之后开始读取。

这也是为什么官方不推荐scroll用来给用户进行实时的分页查询,而是适合于大批量的拉取数据,因为它从设计上就不是为了实时读取数据而设计的。

你可能感兴趣的:(elasticsearch,jenkins,大数据)