量化投资02---手绘K线

import akshare as ak
import pandas as pd
import mplfinance as mpf

#从网上获取某只股票的历史行情代码
df = ak.stock_zh_index_daily(symbol="sh000688")

#将本地存储的数据读到DataFrame中
#df = pd.read_csv('./sh000688.csv')
df.head()

Out[274]:

date open high low close volume
0 2019-12-31 1000.000 1000.000 1000.000 1000.000 151620533
1 2020-01-02 1005.617 1019.910 1005.617 1019.723 219385276
2 2020-01-03 1021.669 1029.071 1018.681 1024.482 216058348
3 2020-01-06 1019.999 1040.140 1019.999 1027.277 266301181
4 2020-01-07 1025.663 1043.083 1019.858 1043.083 267592167

In [275]:

# 设置索引,否则无法正确绘图
df.index = pd.to_datetime(df.date)
df.sort_index()
df.head()

Out[275]:

date open high low close volume
date
2019-12-31 2019-12-31 1000.000 1000.000 1000.000 1000.000 151620533
2020-01-02 2020-01-02 1005.617 1019.910 1005.617 1019.723 219385276
2020-01-03 2020-01-03 1021.669 1029.071 1018.681 1024.482 216058348
2020-01-06 2020-01-06 1019.999 1040.140 1019.999 1027.277 266301181
2020-01-07 2020-01-07 1025.663 1043.083 1019.858 1043.083 267592167

In [276]:

#计算10日均线和50日均线(收盘价)
df['ma10'] = df['close'].rolling(10).mean()
df['ma50'] = df['close'].rolling(50).mean()
df.head(60)

Out[276]:

date open high low close volume ma10 ma50
date
2019-12-31 2019-12-31 1000.000 1000.000 1000.000 1000.000 151620533 NaN NaN
2020-01-02 2020-01-02 1005.617 1019.910 1005.617 1019.723 219385276 NaN NaN
2020-01-03 2020-01-03 1021.669 1029.071 1018.681 1024.482 216058348 NaN NaN
2020-01-06 2020-01-06 1019.999 1040.140 1019.999 1027.277 266301181 NaN NaN
2020-01-07 2020-01-07 1025.663 1043.083 1019.858 1043.083 267592167 NaN NaN
2020-01-08 2020-01-08 1035.836 1059.436 1034.513 1051.160 320762650 NaN NaN
2020-01-09 2020-01-09 1060.580 1081.404 1060.580 1078.312 284342095 NaN NaN
2020-01-10 2020-01-10 1082.310 1088.543 1076.438 1076.438 251547487 NaN NaN
2020-01-13 2020-01-13 1076.762 1105.848 1069.779 1105.848 246625919 NaN NaN
2020-01-14 2020-01-14 1107.776 1133.899 1107.776 1118.306 326246382 1054.4629 NaN
2020-01-15 2020-01-15 1113.252 1120.346 1105.575 1114.766 242046421 1065.9395 NaN
2020-01-16 2020-01-16 1116.508 1161.477 1116.508 1154.303 308528799 1079.3975 NaN
2020-01-17 2020-01-17 1159.372 1252.556 1159.372 1238.664 587359671 1100.8157 NaN
2020-01-20 2020-01-20 1239.439 1270.359 1208.690 1240.509 520259197 1122.1389 NaN
2020-01-21 2020-01-21 1233.646 1247.841 1194.797 1195.014 420678873 1137.3320 NaN
2020-01-22 2020-01-22 1178.784 1247.610 1157.290 1244.525 479474004 1156.6685 NaN
2020-01-23 2020-01-23 1219.233 1262.436 1177.094 1202.102 442593437 1169.0475 NaN
2020-02-03 2020-02-03 1018.276 1082.789 1015.597 1030.550 546654316 1164.4587 NaN
2020-02-04 2020-02-04 1049.956 1153.232 1049.956 1153.232 528620605 1169.1971 NaN
2020-02-05 2020-02-05 1166.973 1240.368 1166.973 1203.613 586021339 1177.7278 NaN
2020-02-06 2020-02-06 1191.731 1251.843 1191.731 1238.757 558998166 1190.1269 NaN
2020-02-07 2020-02-07 1240.038 1307.757 1234.234 1307.757 566478458 1205.4723 NaN
2020-02-10 2020-02-10 1310.526 1336.526 1293.430 1322.250 593290694 1213.8309 NaN
2020-02-11 2020-02-11 1318.420 1318.420 1266.214 1283.572 503753086 1218.1372 NaN
2020-02-12 2020-02-12 1274.796 1360.549 1274.796 1348.702 476390579 1233.5060 NaN
2020-02-13 2020-02-13 1360.129 1409.684 1353.045 1360.709 614405501 1245.1244 NaN
2020-02-14 2020-02-14 1359.373 1382.955 1305.974 1327.224 531016642 1257.6366 NaN
2020-02-17 2020-02-17 1332.965 1381.553 1332.965 1381.553 496988892 1292.7369 NaN
2020-02-18 2020-02-18 1381.583 1404.712 1372.526 1399.384 490560871 1317.3521 NaN
2020-02-19 2020-02-19 1398.781 1412.169 1373.444 1373.444 478319039 1334.3352 NaN
2020-02-20 2020-02-20 1377.756 1390.019 1321.734 1348.338 422226619 1345.2933 NaN
2020-02-21 2020-02-21 1337.557 1373.667 1337.557 1346.863 447545498 1349.2039 NaN
2020-02-24 2020-02-24 1341.988 1359.227 1328.747 1351.710 419998820 1352.1499 NaN
2020-02-25 2020-02-25 1312.479 1371.576 1312.479 1367.368 461159876 1360.5295 NaN
2020-02-26 2020-02-26 1348.075 1361.006 1286.345 1288.242 501581402 1354.4835 NaN
2020-02-27 2020-02-27 1293.187 1293.187 1251.451 1264.941 503282338 1344.9067 NaN
2020-02-28 2020-02-28 1206.858 1231.094 1187.096 1191.055 513208397 1331.2898 NaN
2020-03-02 2020-03-02 1202.959 1259.076 1194.937 1252.624 497973601 1318.3969 NaN
2020-03-03 2020-03-03 1278.269 1332.835 1272.063 1285.034 512293927 1306.9619 NaN
2020-03-04 2020-03-04 1268.834 1277.686 1226.802 1255.723 381952408 1295.1898 NaN
2020-03-05 2020-03-05 1277.706 1277.706 1246.714 1264.788 431261562 1286.8348 NaN
2020-03-06 2020-03-06 1246.096 1255.074 1237.623 1243.373 326121340 1276.4858 NaN
2020-03-09 2020-03-09 1216.035 1223.246 1171.859 1171.859 387270267 1258.5007 NaN
2020-03-10 2020-03-10 1148.397 1216.328 1135.209 1216.328 406492040 1243.3967 NaN
2020-03-11 2020-03-11 1218.516 1233.426 1184.710 1184.710 424850927 1233.0435 NaN
2020-03-12 2020-03-12 1161.922 1177.360 1151.785 1167.065 280538369 1223.2559 NaN
2020-03-13 2020-03-13 1103.956 1187.701 1103.956 1175.282 338330986 1221.6786 NaN
2020-03-16 2020-03-16 1188.078 1200.464 1115.084 1115.084 318118708 1207.9246 NaN
2020-03-17 2020-03-17 1132.949 1141.388 1079.838 1131.547 297267785 1192.5759 NaN
2020-03-18 2020-03-18 1145.302 1173.234 1115.019 1115.019 299956033 1178.5055 1208.04424
2020-03-19 2020-03-19 1116.263 1133.695 1091.240 1128.973 278503183 1164.9240 1210.62370
2020-03-20 2020-03-20 1140.092 1148.090 1114.291 1127.369 235596103 1153.3236 1212.77662
2020-03-23 2020-03-23 1092.501 1096.400 1037.528 1039.884 283047441 1140.1261 1213.08466
2020-03-24 2020-03-24 1067.014 1071.340 1020.249 1060.843 236834177 1124.5776 1213.75598
2020-03-25 2020-03-25 1097.309 1110.099 1094.163 1101.319 249632576 1116.2385 1214.92070
2020-03-26 2020-03-26 1093.331 1111.484 1091.004 1095.338 211377899 1109.0658 1215.80426
2020-03-27 2020-03-27 1109.542 1110.537 1082.932 1084.505 229201253 1099.9881 1215.92812
2020-03-30 2020-03-30 1062.899 1062.899 1021.499 1035.827 226087562 1092.0624 1215.11590
2020-03-31 2020-03-31 1048.736 1055.268 1027.224 1029.749 170367165 1081.8826 1213.59392
2020-04-01 2020-04-01 1026.575 1060.708 1026.575 1037.927 175056079 1074.1734 1211.98634

In [277]:

# 设置mplfinance的蜡烛颜色,up为阳线颜色,down为阴线颜色
my_color = mpf.make_marketcolors(up='r',
                                 down='g',
                                 edge='inherit',
                                 wick='inherit',
                                 volume='inherit')
# 设置图表的背景色
my_style = mpf.make_mpf_style(marketcolors=my_color,
                              figcolor='(0.82, 0.83, 0.85)',
                              gridcolor='(0.82, 0.83, 0.85)')

In [278]:

# 取半年的数据
df = df[51:51+180]
df.head()

Out[278]:

date open high low close volume ma10 ma50
date
2020-03-20 2020-03-20 1140.092 1148.090 1114.291 1127.369 235596103 1153.3236 1212.77662
2020-03-23 2020-03-23 1092.501 1096.400 1037.528 1039.884 283047441 1140.1261 1213.08466
2020-03-24 2020-03-24 1067.014 1071.340 1020.249 1060.843 236834177 1124.5776 1213.75598
2020-03-25 2020-03-25 1097.309 1110.099 1094.163 1101.319 249632576 1116.2385 1214.92070
2020-03-26 2020-03-26 1093.331 1111.484 1091.004 1095.338 211377899 1109.0658 1215.80426

In [279]:

# 画K线,蜡烛图
mpf.plot(df,type='candle',style=my_style,ylabel='price(RMB)')

量化投资02---手绘K线_第1张图片

In [280]:

# 画带成交量的蜡烛图
mpf.plot(df,type='candle',style=my_style,ylabel='price(RMB)',volume=True,ylabel_lower="vol")

量化投资02---手绘K线_第2张图片

In [281]:

df[["ma10","ma50"]]

Out[281]:

ma10 ma50
date
2020-03-20 1153.3236 1212.77662
2020-03-23 1140.1261 1213.08466
2020-03-24 1124.5776 1213.75598
2020-03-25 1116.2385 1214.92070
2020-03-26 1109.0658 1215.80426
... ... ...
2020-12-08 1398.0271 1416.62582
2020-12-09 1395.6945 1416.12486
2020-12-10 1393.1819 1414.85046
2020-12-11 1390.7011 1414.21116
2020-12-14 1389.6592 1414.43194

180 rows × 2 columns

In [282]:

plot_add = [mpf.make_addplot(df[["ma10","ma50"]])]

In [283]:

# 画MA10 MA50
mpf.plot(df,type='candle',style=my_style,ylabel='Price(RMB)',volume=True,ylabel_lower="Volumn",addplot=plot_add)

量化投资02---手绘K线_第3张图片

In [284]:

#ma10 = df.iloc[:,7]
ma10 = df['ma10']
ma50 = df['ma50']
s1 = ma10 < ma50
s2 = ma10 > ma50

death_ex = s1 & s2.shift(1) #判断死叉的条件,一组BOOL值
death_date = df.loc[death_ex].index

golden_ex = -(s1 | s2.shift(1)) #判断金叉的条件,一组BOOL值
golden_date = df.loc[golden_ex].index
death_date

Out[284]:

DatetimeIndex(['2020-08-24', '2020-10-27', '2020-11-30'], dtype='datetime64[ns]', name='date', freq=None)

In [285]:

g = pd.Series(data=np.nan,index=df.index)
g[golden_date] = df.loc[golden_date]['close']
g[golden_date] 

Out[285]:

date
2020-05-07    1224.105
2020-10-19    1412.148
2020-11-05    1475.375
dtype: float64

In [286]:

d = pd.Series(data=np.nan,index=df.index)
d[death_date] = df.loc[death_date]['close']
d

Out[286]:

date
2020-03-20   NaN
2020-03-23   NaN
2020-03-24   NaN
2020-03-25   NaN
2020-03-26   NaN
              ..
2020-12-08   NaN
2020-12-09   NaN
2020-12-10   NaN
2020-12-11   NaN
2020-12-14   NaN
Length: 180, dtype: float64

In [287]:

df[['ma10','ma50']]

Out[287]:

ma10 ma50
date
2020-03-20 1153.3236 1212.77662
2020-03-23 1140.1261 1213.08466
2020-03-24 1124.5776 1213.75598
2020-03-25 1116.2385 1214.92070
2020-03-26 1109.0658 1215.80426
... ... ...
2020-12-08 1398.0271 1416.62582
2020-12-09 1395.6945 1416.12486
2020-12-10 1393.1819 1414.85046
2020-12-11 1390.7011 1414.21116
2020-12-14 1389.6592 1414.43194

180 rows × 2 columns

In [288]:

g.to_frame(name='golden')

Out[288]:

golden
date
2020-03-20 NaN
2020-03-23 NaN
2020-03-24 NaN
2020-03-25 NaN
2020-03-26 NaN
... ...
2020-12-08 NaN
2020-12-09 NaN
2020-12-10 NaN
2020-12-11 NaN
2020-12-14 NaN

180 rows × 1 columns

In [289]:

g.to_frame(name='golden').loc['2020-05-07']

Out[289]:

golden    1224.105
Name: 2020-05-07 00:00:00, dtype: float64

In [290]:

plot_add=[mpf.make_addplot(df[['ma10','ma50']]),
          mpf.make_addplot(g.to_frame(name='golden'),type='scatter',markersize=100,marker='^',color='r'),
          mpf.make_addplot(d.to_frame(name='death'),type='scatter',markersize=100,marker='v',color='b')]

In [291]:

mpf.plot(df,type='candle',style=my_style,ylabel='Price(RMB)',volume=True,ylabel_lower="Volumn",addplot=plot_add)

量化投资02---手绘K线_第4张图片

In [ ]:

 
  

In [ ]:

 
 

你可能感兴趣的:(python,pandas,python,量化)