基于or-tools的护士排班问题建模求解

基于or-tools的护士排班问题建模求解

  • 护士排班问题(Nurse Rostering Problem,NRP)
  • ortools官网例题1:A nurse scheduling problem
    • 代码解析
    • 完整代码
  • ortools官网例题2:Scheduling with shift requests
    • 代码解析
    • 完整代码

)

护士排班问题(Nurse Rostering Problem,NRP)

护士排班问题(Nurse Rostering Problem,NRP)或护士排程问题( nurse scheduling problem,NSP)是员工调度问题(Employee Scheduling)的一种。医院需要反复为护理人员制作值班表,通常情况下,护理人员要花费大量的时间来编制值班表,特别是在有许多工作人员提出要求的情况下,而且在处理对当前值班表的临时更改时可能会花费更多的时间。由于人工调度繁琐、耗时,以及其他种种原因,护士排班问题(NRP)或护士排程问题(NSP)引起了人们的广泛关注。

相关文献:

  • http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1030.5363&rep=rep1&type=pdf
  • https://arxiv.org/pdf/1804.05002.pdf

ortools官网例题1:A nurse scheduling problem

or-tools官网给出了一个使用CP-SAT求解器解决NRP的算例(https://developers.google.cn/optimization/scheduling/employee_scheduling#java_4):
医院主管需要满足一个为期 3 天的护士计划,让其在 3 天内满足 4 个护士的条件,但需满足以下条件:

  1. 每个班次(shift)分为三个 8 小时。
  2. 每天,每个班次都会分配给一名护士,而每个护士都不例外。
  3. 在这 3 天时间里,每个护士都至少分配到两次班次。

∑ s = 1 S x n d s = 1 , ∀ d = 1 , 2 , ⋯   , D ; n = 1 , 2 , ⋯   , N ∑ s = 1 S x n d s ≤ 1 , ∀ S × D N ≤ ∑ d = 1 D ∑ n = 1 N x n d s ≤ S × D N + ( S × D ) % N , ∀ s = 1 , 2 , ⋯   , S \sum_{s=1}^Sx_{nds}=1, \quad \forall d=1,2,\cdots,D ; n=1,2,\cdots,N \\ \sum_{s=1}^Sx_{nds} \leq 1,\quad \forall \\ \frac{S \times D}{N} \leq \sum_{d=1}^D\sum_{n=1}^Nx_{nds} \leq \frac{S \times D}{N}+(S \times D)\%N, \quad \forall s=1,2,\cdots,S s=1Sxnds=1,d=1,2,,D;n=1,2,,Ns=1Sxnds1,NS×Dd=1Dn=1NxndsNS×D+(S×D)%N,s=1,2,,S

代码解析

1、导入ortools库

from ortools.sat.python import cp_model

2、构造数据

num_nurses = 4  # 护士人数
num_shifts = 3  # 每天有3个班次
num_days = 3  # 3天
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)

3、创建模型

model = cp_model.CpModel()

4、创建变量

# 如果将 班次s在d天分配给护士n,则等于 1
shifts = {}
for n in all_nurses:
    for d in all_days:
        for s in all_shifts:
            shifts[(n, d, s)] = model.NewBoolVar(f"shift_n{n}_d{d}_s{s}")

5、约束条件

# 每天每个班次都会分配给一名护士:每天每个班次分配的护士人数之和=1
for (int d : allDays) {
  for (int s : allShifts) {
    List<Literal> nurses = new ArrayList<>();
    for (int n : allNurses) {
      nurses.add(shifts[n][d][s]);
    }
    model.addExactlyOne(nurses);
  }
}
# 每个护士每天最多上一个班次
for n in all_nurses:
    for d in all_days:
        model.AddAtMostOne(shifts[(n, d, s)] for s in all_shifts)

每个护士上的班次尽可能均分,有4个护士,3天*3班次/天=9班次
则每个护士平均分配9 / 4 = 2.25班次,则每个护士至少上2个班次,至多上3个班次。

# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
    max_shifts_per_nurse = min_shifts_per_nurse
else:
    max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
    shifts_worked = []
    for d in all_days:
        for s in all_shifts:
            shifts_worked.append(shifts[(n, d, s)])
    model.Add(min_shifts_per_nurse <= sum(shifts_worked))
    model.Add(sum(shifts_worked) <= max_shifts_per_nurse)

6、设置模型参数

# 在非优化模型中,可以启用对所有解决方案的搜索
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True

7、调用回调函数

class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self._shifts = shifts
        self._num_nurses = num_nurses
        self._num_days = num_days
        self._num_shifts = num_shifts
        self._solution_count = 0
        self._solution_limit = limit

    def on_solution_callback(self):
        self._solution_count += 1
        print(f"Solution {self._solution_count}")
        for d in range(self._num_days):
            print(f"Day {d}")
            for n in range(self._num_nurses):
                is_working = False
                for s in range(self._num_shifts):
                    if self.Value(self._shifts[(n, d, s)]):
                        is_working = True
                        print(f"  Nurse {n} works shift {s}")
                if not is_working:
                    print(f"  Nurse {n} does not work")
        if self._solution_count >= self._solution_limit:
            print(f"Stop search after {self._solution_limit} solutions")
            self.StopSearch()

    def solution_count(self):
        return self._solution_count

# Display the first five solutions.
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(
    shifts, num_nurses, num_days, num_shifts, solution_limit
)

8、调用求解器求解

solver.Solve(model, solution_printer)

完整代码

import numpy as np
from ortools.sat.python import cp_model
import collections

num_nurses = 4  # 护士人数
num_shifts = 3  # 每天有3个班次
num_days = 3  # 3天
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)

print(all_nurses)

model = cp_model.CpModel()

# 如果将 班次shift s 在d天分配给护士n,则等于 1
shifts = {}
for nurse in all_nurses:
    for day in all_days:
        for shift in all_shifts:
            shifts[(nurse, day, shift)] = model.NewBoolVar(f"nurse{nurse}_day{day}_shift{shift}")

# 每天每个班次都会分配给一名护士:每天每个班次分配的护士人数之和=1
# Each shift is assigned to a single nurse per day.
for day in all_days:
    for shift in all_shifts:
        model.AddExactlyOne(shifts[(nurse, day, shift)] for nurse in all_nurses)

# 每个护士每天最多上一个班次
for nurse in all_nurses:
    for day in all_days:
        model.AddAtMostOne(shifts[(nurse, day, shift)] for shift in all_shifts)

"""
每个护士上的班次尽可能均分,有4个护士,3天*每天3班次=9班次
则每个护士平均9 // 4 = 2
"""
# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
    max_shifts_per_nurse = min_shifts_per_nurse
else:
    max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
    shifts_worked = []
    for d in all_days:
        for s in all_shifts:
            shifts_worked.append(shifts[(n, d, s)])
    model.Add(min_shifts_per_nurse <= sum(shifts_worked))
    model.Add(sum(shifts_worked) <= max_shifts_per_nurse)

# 在非优化模型中,可以启用对所有解决方案的搜索
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True


class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""
    """
    调用回调函数,打印中间结果
    """

    def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self._shifts = shifts
        self._num_nurses = num_nurses
        self._num_days = num_days
        self._num_shifts = num_shifts
        self._solution_count = 0
        self._solution_limit = limit

    def on_solution_callback(self):
        self._solution_count += 1
        so = np.zeros(shape=(num_days, num_shifts), dtype=np.int64)

        print(f"Solution {self._solution_count}")
        for d in range(self._num_days):
            # print(f"Day {d}")
            for n in range(self._num_nurses):
                is_working = False
                for s in range(self._num_shifts):
                    if self.Value(self._shifts[(n, d, s)]):
                        is_working = True
                        # print(f"  Nurse {n} works shift {s}")
                        so[d][s] = n
                if not is_working:
                    # print(f"  Nurse {n} does not work")
                    pass
        if self._solution_count >= self._solution_limit:
            print(f"Stop    search after {self._solution_limit} solutions")
            self.StopSearch()

        print(f'        shift1  shift2  shift3')
        for i in range(len(so)):
            print(f'day{i + 1}', end='\t')
            for j in range(len(so[i])):
                print(f'nurse{so[i][j] + 1}', end='\t')
            print()

    def solution_count(self):
        return self._solution_count


# Display the first five solutions.显示前5个解
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(
    shifts, num_nurses, num_days, num_shifts, solution_limit
)
solver.Solve(model, solution_printer)

输出结果为:
基于or-tools的护士排班问题建模求解_第1张图片

ortools官网例题2:Scheduling with shift requests

例题2相比于例题1,增加了特定班次的护士需求,目标函数为最大化护士需求满足的人数(尽可能满足护士需求)。对于大多数调度问题,输出所有解不太可能,因此需要有一个目标函数。例题2和例题1约束条件相同。

代码解析

1、导入库

from ortools.sat.python import cp_model

2、导入数据
shift_requests 是一个5 * 7 * 3的矩阵,表示5个护士7天,每一天3个班次的值班需求。如shift[2][0][1]代表护士护士2在第0天想上班次1。

num_nurses = 5 
num_shifts = 3
num_days = 7
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)
shift_requests = [
    [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]],
    [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]],
    [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]],
    [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
    [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]],
]

3、创建模型

model = cp_model.CpModel()

4、模型变量

shifts = {}
for n in all_nurses:
    for d in all_days:
        for s in all_shifts:
            shifts[(n, d, s)] = model.NewBoolVar(f"shift_n{n}_d{d}_s{s}")

5、约束条件

for d in all_days:
    for s in all_shifts:
        model.AddExactlyOne(shifts[(n, d, s)] for n in all_nurses)
for n in all_nurses:
    for d in all_days:
        model.AddAtMostOne(shifts[(n, d, s)] for s in all_shifts)
# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
    max_shifts_per_nurse = min_shifts_per_nurse
else:
    max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
    num_shifts_worked = 0
    for d in all_days:
        for s in all_shifts:
            num_shifts_worked += shifts[(n, d, s)]
    model.Add(min_shifts_per_nurse <= num_shifts_worked)
    model.Add(num_shifts_worked <= max_shifts_per_nurse)

5、目标函数

# pylint: disable=g-complex-comprehension
model.Maximize(
    sum(
        shift_requests[n][d][s] * shifts[(n, d, s)]
        for n in all_nurses
        for d in all_days
        for s in all_shifts
    )
)

这里python用了嵌套的列表推导式,转换成一般写法,更直观:

expr = 0
for n in all_nurses:
    for d in all_days:
        for s in all_shifts:
            expr += shift_requests[n][d][s] * shifts[(n, d, s)]
model.Maximize(expr)

6、调用求解器

solver = cp_model.CpSolver()
status = solver.Solve(model)

solver.Solve(model)返回的是求解状态(是否得到最优解、可行解等),这里可以从Java语法来看返回值类型,更直观,以上两行代码等价于:

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

7、结果输出

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.printf("Solution:%n");
  for (int d : allDays) {
    System.out.printf("Day %d%n", d);
    for (int n : allNurses) {
      for (int s : allShifts) {
        if (solver.booleanValue(shifts[n][d][s])) {
          if (shiftRequests[n][d][s] == 1) {
            System.out.printf("  Nurse %d works shift %d (requested).%n", n, s);
          } else {
            System.out.printf("  Nurse %d works shift %d (not requested).%n", n, s);
          }
        }
      }
    }
  }
  System.out.printf("Number of shift requests met = %f (out of %d)%n", solver.objectiveValue(),
      numNurses * minShiftsPerNurse);
} else {
  System.out.printf("No optimal solution found !");
}

完整代码

"""Nurse scheduling problem with shift requests."""
from ortools.sat.python import cp_model


def main():
    # This program tries to find an optimal assignment of nurses to shifts
    # (3 shifts per day, for 7 days), subject to some constraints (see below).
    # Each nurse can request to be assigned to specific shifts.
    # The optimal assignment maximizes the number of fulfilled shift requests.
    num_nurses = 5
    num_shifts = 3
    num_days = 7
    all_nurses = range(num_nurses)
    all_shifts = range(num_shifts)
    all_days = range(num_days)
    shift_requests = [
        [[0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1]],
        [[0, 0, 0], [0, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1]],
        [[0, 1, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0]],
        [[0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
        [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 0]],
    ]

    # Creates the model.
    model = cp_model.CpModel()

    # Creates shift variables.
    # shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
    shifts = {}
    for n in all_nurses:
        for d in all_days:
            for s in all_shifts:
                shifts[(n, d, s)] = model.NewBoolVar(f"shift_n{n}_d{d}_s{s}")

    # Each shift is assigned to exactly one nurse in .
    for d in all_days:
        for s in all_shifts:
            model.AddExactlyOne(shifts[(n, d, s)] for n in all_nurses)

    # Each nurse works at most one shift per day.
    for n in all_nurses:
        for d in all_days:
            model.AddAtMostOne(shifts[(n, d, s)] for s in all_shifts)

    # Try to distribute the shifts evenly, so that each nurse works
    # min_shifts_per_nurse shifts. If this is not possible, because the total
    # number of shifts is not divisible by the number of nurses, some nurses will
    # be assigned one more shift.
    min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
    if num_shifts * num_days % num_nurses == 0:
        max_shifts_per_nurse = min_shifts_per_nurse
    else:
        max_shifts_per_nurse = min_shifts_per_nurse + 1
    for n in all_nurses:
        num_shifts_worked = 0
        for d in all_days:
            for s in all_shifts:
                num_shifts_worked += shifts[(n, d, s)]
        model.Add(min_shifts_per_nurse <= num_shifts_worked)
        model.Add(num_shifts_worked <= max_shifts_per_nurse)

    # pylint: disable=g-complex-comprehension
    model.Maximize(
        sum(
            shift_requests[n][d][s] * shifts[(n, d, s)]
            for n in all_nurses
            for d in all_days
            for s in all_shifts
        )
    )

    # Creates the solver and solve.
    solver = cp_model.CpSolver()
    status = solver.Solve(model)

    if status == cp_model.OPTIMAL:
        print("Solution:")
        for d in all_days:
            print("Day", d)
            for n in all_nurses:
                for s in all_shifts:
                    if solver.Value(shifts[(n, d, s)]) == 1:
                        if shift_requests[n][d][s] == 1:
                            print("Nurse", n, "works shift", s, "(requested).")
                        else:
                            print("Nurse", n, "works shift", s, "(not requested).")
            print()
        print(
            f"Number of shift requests met = {solver.ObjectiveValue()}",
            f"(out of {num_nurses * min_shifts_per_nurse})",
        )
    else:
        print("No optimal solution found !")

    # Statistics.
    print("\nStatistics")
    print(f"  - conflicts: {solver.NumConflicts()}")
    print(f"  - branches : {solver.NumBranches()}")
    print(f"  - wall time: {solver.WallTime()}s")


if __name__ == "__main__":
    main()

你可能感兴趣的:(智能优化算法,ortools,python,求解器,约束规划)