谈谈Redis的内存淘汰策略问题

转载自品略图书馆 http://www.pinlue.com/article/2020/07/1815/4111044671444.html

 

 

Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小。

Redis配置内存

1、通过配置文件配置 通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小

  •  
  •  
  •  
 

//设置Redis最大占用内存大小为100Mmaxmemory 100mb

redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的

2、通过命令修改 Redis支持运行时通过命令动态修改内存大小

  •  
  •  
  •  
  •  
 

//设置Redis最大占用内存大小为100M127.0.0.1:6379> config set maxmemory 100mb//获取设置的Redis能使用的最大内存大小127.0.0.1:6379> config get maxmemory

如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?实际上Redis定义了几种策略用来处理这种情况:

1.noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)2.allkeys-lru:从所有key中使用LRU算法进行淘汰3.volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰4.allkeys-random:从所有key中随机淘汰数据5.volatile-random:从设置了过期时间的key中随机淘汰6.volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

 

当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误如何获取及设置内存淘汰策略 获取当前内存淘汰策略:

  •  
                127.0.0.1:6379> config get maxmemory-policy            

通过配置文件设置淘汰策略(修改redis.conf文件):

  •  
                maxmemory-policy allkeys-lru            

通过命令修改淘汰策略:

  •  
                127.0.0.1:6379> config set maxmemory-policy allkeys-lru            

LRU算法

1.什么是LRU? 上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。使用java实现一个简单的LRU算法

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
                publicclassLRUCache{//容量privateint capacity;//当前有多少节点的统计privateint count;//缓存节点privateMap> nodeMap;privateNode head;privateNode tail;publicLRUCache(int capacity){if(capacity <1){thrownewIllegalArgumentException(String.valueOf(capacity));}this.capacity = capacity;this.nodeMap =newHashMap<>();//初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码Node headNode =newNode(null,null);Node tailNode =newNode(null,null);        headNode.next= tailNode;        tailNode.pre = headNode;this.head = headNode;this.tail = tailNode;}publicvoid put(k key, v value){Node node = nodeMap.get(key);if(node ==null){if(count >= capacity){//先移除一个节点                removeNode();}            node =newNode<>(key, value);//添加节点            addNode(node);}else{//移动节点到头节点            moveNodeToHead(node);}}publicNodeget(k key){Node node = nodeMap.get(key);if(node !=null){            moveNodeToHead(node);}return node;}privatevoid removeNode(){Node node = tail.pre;//从链表里面移除        removeFromList(node);        nodeMap.remove(node.key);        count--;}privatevoid removeFromList(Node node){Node pre = node.pre;Nodenext= node.next;        pre.next=next;next.pre = pre;        node.next=null;        node.pre =null;}privatevoid addNode(Node node){//添加节点到头部        addToHead(node);        nodeMap.put(node.key, node);        count++;}privatevoid addToHead(Node node){Nodenext= head.next;next.pre = node;        node.next=next;        node.pre = head;        head.next= node;}publicvoid moveNodeToHead(Node node){//从链表里面移除        removeFromList(node);//添加节点到头部        addToHead(node);}classNode{        k key;        v value;Node pre;Nodenext;publicNode(k key, v value){this.key = key;this.value = value;}}}            

上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。

LRU在Redis中的实现

1.近似LRU算法 Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。2.Redis3.0对近似LRU的优化 Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。3.LRU算法的对比 我们可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据,如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。生成如下各LRU算法的对比图你可以看到图中有三种不同颜色的点:

 

1.浅灰色是被淘汰的数据2.灰色是没有被淘汰掉的老数据3.绿色是新加入的数据

 

我们能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used,它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。LFU算法能更好的表示一个key被访问的热度。假如你使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。LFU一共有两种策略:

•volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key•allkeys-lfu:在所有的key中使用LFU算法淘汰数据

 

设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错

你可能感兴趣的:(电脑,内存,redis,内存)