- Flink实时流处理入门与实践
随风九天
springjavaFlink实时流
一、引言1.1实时流处理的重要性在当今数据驱动的时代,实时数据处理变得越来越重要。企业需要从不断产生的大量数据中快速提取有价值的信息,以支持决策制定和业务优化。实时流处理技术能够实时处理数据流,提供即时的洞察和响应,从而提高业务效率和竞争力。1.2Flink简介ApacheFlink是一个开源的分布式流处理框架,支持批处理和流处理。Flink提供了高吞吐量、低延迟和精确一次(exactly-onc
- kafka + flink +mysql 案例
angen2018
javakafkaflink
假设你有两个Kafka主题:user_activities_topic和product_views_topic,并且你希望将user_activities_topic中的数据写入到user_activities表,而将product_views_topic中的数据写入到product_views表。mavenorg.apache.flinkflink-streaming-java_2.121.14
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- Flink 实战:如何计算实时热门合约
WuJiWeb3
区块链链上数据分析flink大数据web3数据分析智能合约kafkabigdata
本文将通过使用Flink框架实现实时热门合约需求。实际业务过程中,如何判断合约是否属于热门合约,可以从以下几个方面进行分析,比如:交易数量:合约被调用的次数可以作为其热门程度的指标之一。交易金额:合约处理的资金量也是评判热门程度的重要指标。活跃用户数量:调用合约的用户数量可以反映合约的受欢迎程度。交易频率:合约的调用频率可以反映其热门程度和使用情况。但我们本次目的主要是关于学习FlinkAPI的一
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Spark scala api(一)RDD编程
weixin_42521881
spark学习
基础初始化sparkvalconf=newSparkConf().setAppName("wordcount")valsc=newSparkContext(conf)转化操作和行动操作的区别在于spark计算rdd的方式不同,只有在第一次在一个行动操作中用到转化操作中的rdd时,才会真正计算这些rdd。创建rdd//驱动器程序对一个集合进行并行化vallines=sc.parallelize(Li
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- 大数据运维实战指南:零基础入门与核心技术解析(第一篇)
emmm形成中
大数据运维
大数据运维实战指南:零基础入门与核心技术解析(第一篇)系列文章目录第一篇:大数据运维概述与核心技能体系第二篇:Hadoop生态体系与集群部署实战第三篇:分布式存储系统运维与优化第四篇:资源调度框架YARN/K8s深度解析第五篇:实时计算框架Flink/Spark运维指南第六篇:大数据监控体系与自动化运维第七篇:云原生时代的大数据运维实践第八篇:数据安全与合规性管理第九篇:性能调优与故障排查案例集第
- hadoop运行java程序命令_使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
emi0wb
网上的MapReduceWordCount教程对于如何编译WordCount.java几乎是一笔带过…而有写到的,大多又是0.20等旧版本版本的做法,即javac-classpath/usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jarWordCount.java,但较新的2.X版本中,已经没有hadoop-core*.jar这个文件,因此编辑和打
- 快慢指针【等分链表、判断链表中是否存在环】
山风wind
JAVA基础链表java网络
一、等分链表:找到链表的中间节点Java实现classListNode{intval;ListNodenext;ListNode(intval){this.val=val;this.next=null;}}publicclassMiddleOfLinkedList{publicListNodefindMiddleNode(ListNodehead){if(head==null){returnnul
- flink入门
Thomas2143
总结flinkscalakafka
flink安装flink本地安装demo运行本地模式安装|ApacheFlinkflink1.13.1为例:cd/optwgethttps://mirrors.advancedhosters.com/apache/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.12.tgz
- Apache Flink详解:流处理与批处理的强大框架
微笑听雨。
大数据apacheflink大数据
ApacheFlink详解:流处理与批处理的强大框架ApacheFlink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:核心概念流与批处理:流处理(StreamProcessing):持续不断地处理实时生成的数据流。批处理(BatchProcessing):处理已经收集好的静态数据集。Data
- Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?
狮歌~资深攻城狮
大数据
Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?嘿,各位小伙伴!今天咱来聊聊Flink在市场中的竞争力这个超有意思的话题。你要是搞大数据的,那肯定对Flink不陌生;要是还不太懂的,也别担心,咱就像唠家常一样把这事给你讲清楚。一、Flink市场竞争力啥意思?咱先说说这市场竞争力是个啥。打个比方,它就好比一场商场大促,每个品牌都在拼命展示自己的优势,吸引顾客掏钱包。Flink在市场里也
- 【Flink】(二)详解 Flink 运行架构_flink的运行架构负荷分担是什么
2301_82242724
flink架构大数据
作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:作业管理器(JobManager)控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。Jo
- flink分发策略详解
24k小善
flink大数据java
一、分发策略核心逻辑与分类Flink的数据分发策略决定了数据在算子间上下游的传输方式,直接影响作业的并行度利用、负载均衡、网络开销。其核心分类如下:1.本地通信策略Forward适用场景:上下游算子并行度相同且为一对一传输(如Source→Map)。特点:数据不跨节点,直接通过内存传递,零网络开销。限制:必须保证上下游并行度严格一致,否则抛出异常。Rescale适用场景:上下游并行度成整数倍关系(
- 【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
*星星之火*
Flink反欺诈flink大数据flink反欺诈
【flink应用系列】1.Flink银行反欺诈系统设计方案1.经典案例:短时间内多次大额交易1.1场景描述1.2风险判定逻辑2.使用Flink实现2.1实现思路2.2代码实现2.3使用Flink流处理3.使用FlinkCEP实现3.1实现思路3.2代码实现4.总结1.经典案例:短时间内多次大额交易1.1场景描述规则1:单笔交易金额超过10,000元。规则2:同一用户在10分钟内进行了3次或更多次交
- 【Flink银行反欺诈系统设计方案】4.Flink CEP 规则表刷新方式
*星星之火*
Flink反欺诈flinkjava数据库
【Flink银行反欺诈系统设计方案】4.FlinkCEP规则表刷新方式概要1.**实现思路**2.**代码实现**2.1定义POJO2.2规则加载与动态更新2.3动态规则更新与CEP模式匹配3.**规则更新的触发机制**3.1定期加载规则3.2监听规则变化4.**总结**概要在FlinkCEP中,规则的动态更新是一个关键需求,尤其是在风控系统中,规则可能会频繁调整。为了实现规则的动态更新,我们可以
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- TiDB系列之:使用Flink TiDB CDC Connector采集数据
快乐骑行^_^
日常分享专栏TiDB系列使用FlinkTiDBCDCConnector采集数据
TiDB系列之:使用FlinkTiDBCDCConnector采集数据一、依赖项二、Maven依赖三、SQLClientJAR四、如何创建TiDBCDC表五、连接器选项六、可用元数据七、特征一次性处理启动阅读位置多线程读取DataStreamSource八、数据类型映射TiDBCDC连接器允许从TiDB数据库读取快照数据和增量数据。本文档介绍如何设置TiDBCDC连接器以对TiDB数据库运行SQL
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- SpringBoot集成Flink-CDC
whiteBrocade
springflinkmysqljava-activemqkafkaelasticsearch
FlinkCDCCDC相关介绍CDC是什么?CDC是ChangeDataCapture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到MQ以供其他服务进行订阅及消费CDC分类CDC主要分为基于查询和基于Binlog基于查询基于Binlog开源产品Sqoop、DataXCanal、Maxwell、Debe
- flink重启策略
24k小善
flink大数据java
一、重启策略核心意义Flink重启策略(RestartStrategy)是容错机制的核心组件,用于定义作业在发生故障时如何恢复执行。其核心目标为:最小化停机时间:快速恢复数据处理,降低业务影响。平衡资源消耗:避免无限重启导致集群资源耗尽。状态一致性保障:与Checkpoint机制协同,确保Exactly-Once语义。二、四大重启策略详解1.固定延迟重启(FixedDelayRestart)机制:
- 学习Flink:一场大数据世界的奇妙冒险
狮歌~资深攻城狮
大数据
学习Flink:一场大数据世界的奇妙冒险嘿,朋友们!今天咱们来聊聊怎么学习Flink这个在大数据界超火的玩意儿相信很多小伙伴都听说过它,但不知道从哪儿开始下手,别愁,听我慢慢唠唠~一、学习Flink前的“装备”准备想象一下,你要去攀登一座高峰学习Flink也得先做好准备工作呀。首先,你得熟悉一门编程语言,Java或者Scala比较好。Java就像是你出门的常用交通工具大家都比较熟悉,找资料、学教程
- IntelliJ IDEA + Maven环境编写第一个hadoop程序
IT独白者
hadoophadoop
1.新建IntelliJ下的maven项目点击File->New->Project,在弹出的对话框中选择Maven,JDK选择你自己安装的版本,点击Next2.填写Maven的GroupId和ArtifactId你可以根据自己的项目随便填,点击Next这样就新建好了一个空的项目这里程序名填写WordCount,我们的程序是一个通用的网上的范例,用来计算文件中单词出现的次数3.设置程序的编译版本打开
- 第一个Hadoop程序
lqlj2233
hadoop大数据分布式
编写和运行第一个Hadoop程序是学习Hadoop的重要步骤。以下是一个经典的“WordCount”程序示例,它统计文本文件中每个单词出现的次数。我们将使用Java编写MapReduce程序,并在Hadoop集群上运行它。一、WordCount程序概述WordCount是Hadoop的“HelloWorld”程序。它的基本逻辑如下:Mapper:读取输入文件,将每一行文本拆分为单词,并输出每个单词
- 【自学笔记】Hadoop基础知识点总览-持续更新
Long_poem
笔记hadoop大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Hadoop基础知识点总览1.Hadoop简介2.Hadoop生态系统3.HDFS(HadoopDistributedFileSystem)HDFS基本命令4.MapReduceWordCount示例(Java)5.YARN(YetAnotherResourceNegotiator)6.其他组件简介总结Hadoop基础知识点总
- 基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
flink大数据实时计算
这篇教程将展示如何基于FlinkCDCYAML快速构建MySQL到Kafka的流式数据集成作业,包含整库同步、表结构变更同步的演示和特色功能的介绍。本教程的演示都将在FlinkCDCCLI中进行,无需一行Java/Scala代码,也无需安装IDE。准备阶段准备FlinkStandalone集群下载Flink1.19.2,解压后得到flink-1.19.2目录。使用下面的命令跳转至Flink目录下,
- Databend 产品月报(2025年2月)
数据库
很高兴为您带来Databend2025年2月的最新更新、新功能和改进!我们希望这些增强功能对您有所帮助,并期待您的反馈。从MySQL迁移到DatabendDatabend推荐使用db-archiver进行MySQL批量迁移,使用FlinkCDC进行实时变更数据捕获(CDC)迁移。教程已更新:使用db-archiver从MySQL迁移使用FlinkCDC从MySQL迁移设置会话标签现在,您可以为会话
- Flink CDC + Oracle Demo
缘上寒山
flinkoracle
本文用于说明Flink集成oraclecdc的方式pom.xml1.13.32.12org.apache.flinkflink-java${flink.version}provided-->org.apache.flinkflink-clients_2.11${flink.version}com.ververicaflink-connector-oracle-cdcprovided-->
- Flink CEP原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
FlinkCEP原理与代码实例讲解1.背景介绍1.1什么是复杂事件处理CEP复杂事件处理(ComplexEventProcessing,CEP)是一种用于分析事件流的技术。它可以从多个事件源中实时检测复杂的事件模式,进而推断有意义的事件或做出及时响应。CEP在金融、物联网、安全等领域有广泛应用。1.2FlinkCEP简介Flink是一个开源的分布式流处理框架,具有低延迟、高吞吐、准确性和良好的容错
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息