分治算法思想

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归的定义。关于分治和递归的区别,我们在排序(下)的时候讲过,分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

  • 分解:将原问题分解成一系列子问题;

-解决:递归地求解各个子问题,若子问题足够小,则直接求解;

  • 合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般需要满足下面这几个条件:

  • 原问题与分解成的小问题具有相同的模式;

  • 原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等我们讲到动态规划的时候,会详细对比这两种算法;

  • 具有分解终止条件,也就是说,当问题足够小时,可以直接求解

  • 可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

分治算法应用举例分析

理解分治算法的原理并不难,但是要想灵活应用并不容易。所以,接下来,我会带你用分治算法解决我们在讲排序的时候涉及的一个问题,加深你对分治算法的理解。

还记得我们在排序算法里讲的数据的有序度、逆序度的概念吗?我当时讲到,我们用有序度来表示一组数据的有序程度,用逆序度表示一组数据的无序程度。
假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。


逆序对

我现在的问题是,如何编程求出一组数据的有序对个数或者逆序对个数呢?因为有序对个数和逆序对个数的求解方式是类似的,所以你可以只思考逆序对个数的求解方法。

最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。我们把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是 O(n^2)。那有没有更加高效的处理方法呢?

我们用分治算法来试试。我们套用分治的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3

我们前面讲过,使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?
归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。

归并排序

尽管我画了张图来解释,但是我个人觉得,对于工程师来说,看代码肯定更好理解一些,所以我们把这个过程翻译成了代码,你可以结合着图和文字描述一起看下。

有很多同学经常说,某某算法思想如此巧妙,我是怎么也想不到的。实际上,确实是的。有些算法确实非常巧妙,并不是每个人短时间都能想到的。比如这个问题,并不是每个人都能想到可以借助归并排序算法来解决,不夸张地说,如果之前没接触过,绝大部分人都想不到。但是,如果我告诉你可以借助归并排序算法来解决,那你就应该要想到如何改造归并排序,来求解这个问题了,只要你能做到这一点,我觉得就很棒了。

关于分治算法,我这还有两道比较经典的问题,你可以自己练习一下。

  • 二维平面上有 n 个点,如何快速计算出两个距离最近的点对?

  • 有两个 nn 的矩阵 A,B,如何快速求解两个矩阵的乘积 C=AB?

你可能感兴趣的:(分治算法思想)