C/C++语言基础进阶算法备赛面试 经典、实用、趣味 程序设计编程300例精解每日一练第16天

前言:

备赛蓝桥杯,大学电子设计大赛,C语言提高,算法准备,定位大厂刷题,所以每天一练,不是很适合新手,适合长期规划有一定基础的同学跟上,每日文档由三部分组成,基础题(适合备赛国二),趣味题(适合有兴趣的同学),经典算法题(适合更高要求)组成。当然本意是记录自己训练的过程,基础题基本能做出来,能给自己一个正面回馈,趣味题可以培养兴趣,经典算法题用于真正来训练自己,开眼见长见识,在遇到困难的问题有更好的解决办法,最关键是每天三个题充分利用了零碎时间,细水才能长流,共勉坚持!!!!

基础题:

【程序16】 题目:画图,学用circle画圆形。

1.程序分析:

2.程序源代码:
/circle/


#include "graphics.h" 

main() 

{int driver,mode,i; 

float j=1,k=1; 

driver=VGA;mode=VGAHI; 

initgraph(&driver,&mode,""); 

setbkcolor(YELLOW); 

for(i=0;i<=25;i++) 

{ 

setcolor(8); 

circle(310,250,k); 

k=k+j; 

j=j+0.3; 

} 

} 

趣味题:

16.出售金鱼

买卖提将养的一缸金鱼分五次出售系统上一次卖出全部的一半加二分之一条;第二次卖出余下的三分之一加三分之一条;第三次卖出余下的四分之一加四分之一条;第四次卖出余下的五分之一加五分之一条;最后卖出余下的11条。问原来的鱼缸中共有几条金鱼?

*问题分析与算法设计

题目中所有的鱼是分五次出售的,每次卖出的策略相同;第j次卖剩下的(j+1)分之一再加1/(j+1)条。第五次将第四次余下的11条全卖了。
假定第j次鱼的总数为X,则第j次留下:
x-(x+1)/(j+1)
当第四次出售完毕时,应该剩下11条。若X满足上述要求,则X就是题目的解。
应当注意的是:"(x+1)/(j+1)"应满足整除条件。试探X的初值可以从23开始,试探的步长为2,因为X的值一定为奇数。

*程序说明与注释
#include
int main()
{
int i,j,n=0,x; /*n为标志变量*/
for(i=23;n==0;i+=2) /*控制试探的步长和过程*/
{
for(j=1,x=i;j<=4&&x>=11;j++) /*完成出售四次的操作*/
if((x+1)%(j+1)==0) /*若满足整除条件则进行实际的出售操作*/
x-=(x+1)/(j+1);
else {x=0;break;} /*否则停止计算过程*/
if(j==5&&x==11) /*若第四次余下11条则满足题意*/
{
printf("There are %d fishes at first.\n",i); /*输出结果*/
n=1; /*控制退出试探过程*/
}
}
}

*运行结果
There are 59 fishes at first.

*思考题

日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?

经典算法题:

16.超长整数运算(大数运算)

说明
基于记忆体的有效运用,程式语言中规定了各种不同的资料型态,也因此变数所可以表达的最大整数受到限制,例如123456789123456789这样的 整数就不可能储存在long变数中(例如C/C++等),我们称这为long数,这边翻为超长整数(避免与资料型态的长整数翻译混淆),或俗称大数运算。
解法
一个变数无法表示超长整数,则就使用多个变数,当然这使用阵列最为方便,假设程式语言的最大资料型态可以储存至65535的数好了,为了计算方便及符合使用十进位制的习惯,让每一个阵列元素可以储存四个位数,也就是0到9999的数,例如:
C/C++语言基础进阶算法备赛面试 经典、实用、趣味 程序设计编程300例精解每日一练第16天_第1张图片
很多人问到如何计算像50!这样的问题,解法就是使用程式中的乘法函式,至于要算到多大,就看需求了。

由于使用阵列来储存数值,关于数值在运算时的加减乘除等各种运算、位数的进位或借位就必须自行定义,加、减、乘都是由低位数开始运算,而除法则是由高位数开始运算,这边直接提供加减乘除运算的函式供作参考,以下的N为阵列长度。

void add(int *a, int *b, int *c) { 
    int i, carry = 0; 

    for(i = N - 1; i >= 0; i--) { 
        c[i] = a[i] + b[i] + carry; 
        if(c[i] < 10000) 
            carry = 0; 
        else { // 进位 
            c[i] = c[i] - 10000; 
            carry = 1; 
        } 
    } 
} 

void sub(int *a, int *b, int *c) { 
    int i, borrow = 0; 
    for(i = N - 1; i >= 0; i--) { 
        c[i] = a[i] - b[i] - borrow; 
        if(c[i] >= 0) 
            borrow = 0; 
        else { // 借位 
            c[i] = c[i] + 10000; 
            borrow = 1; 
        } 
    } 
} 

void mul(int *a, int b, int *c) { // b 为乘数 
    int i, tmp, carry = 0; 
    for(i = N - 1; i >=0; i--) { 
        tmp = a[i] * b + carry; 
        c[i] = tmp % 10000;    
        carry = tmp / 10000; 
    } 
} 

void div(int *a, int b, int *c) {  // b 为除数 
    int i, tmp, remain = 0; 
    for(i = 0; i < N; i++) { 
        tmp = a[i] + remain; 
        c[i] = tmp / b; 
        remain = (tmp % b) * 10000; 
    }
    } 

后续

有更优秀的解法和更优秀的训练题评论区留言,多交流!!!

你可能感兴趣的:(C/C++算法每日一练,算法,c语言,c++,蓝桥杯,面试)