pytorch的pixel_shuffle转tflite文件

torch.pixel_shuffle()是pytorch里面上采样比较常用的方法,但是和tensoflow的depth_to_space不是完全一样的,虽然看起来功能很像,但是细微是有差异的

def tf_pixelshuffle(input, upscale_factor):
    temp = []
    depth = upscale_factor *upscale_factor
    channels = input.shape.as_list()[-1] // depth
    for i in range(channels):
        out_ = tf.nn.depth_to_space(input=input[:,:, :,i*depth:(i+1)*depth], block_size=upscale_factor)
        temp.append(out_)
    out = tf.concat(temp, axis=-1)
    return out

因为,有人发现在单通道的时候是depth_to_space和pixel_shuffle结果是一样的,所以拆分出来计算好在合并就行,这样速度基本上没有增加多少,亲测速度也是很快的,比从头开始实现pixel_shuffle是快非常多的。

如果使用这样的从头开始实现,转出来的tflite是没法运行在手机上面的,因为tf.transpose的维度太多了,tflite在手机上不支持6个维度的transpose的,因为超过5个维度就会产生flex层,flex层是不被支持的。

def pixel_shuffle(x, upscale_factor):
    batch_size, height, width, channels = x.shape
    channel_split = channels // (upscale_factor ** 2)

    # Reshape the input tensor to split channels
    x = tf.reshape(x, (batch_size, height, width, upscale_factor, upscale_factor, channel_split))

    # Transpose and reshape to get the pixel shuffled output
    x = tf.transpose(x, perm=[0, 1, 3, 2, 4, 5])
    x = tf.reshape(x, (batch_size, height * upscale_factor, width * upscale_factor, channel_split))

    return x

下面就测试一下:

新建pytorch模型

import torch
import torch.nn as nn


class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv=nn.Conv2d(in_channels=3,
                            out_channels=12,
                            kernel_size=3,
                            stride=2,
                            padding=1)

    def forward(self, input):
        x=self.conv(input)
        out=torch.pixel_shuffle(x,2)
        return out

可视化出来

pytorch的pixel_shuffle转tflite文件_第1张图片

利用tf_pixelshuffle转出来的结果:

pytorch的pixel_shuffle转tflite文件_第2张图片

利用pixel_shuffle转出来的结果:

pytorch的pixel_shuffle转tflite文件_第3张图片

你可能感兴趣的:(计算机视觉,深度学习,pytorch,人工智能,python)