- Lab17_ Blind SQL injection with out-of-band data exfiltration
远川_Horizon
web安全sql
文章目录前言:进入实验室构造payload前言:实验室标题为:带外数据泄露的SQL盲注简介:本实验包含一个SQL盲目注入漏洞。应用程序使用跟踪Cookie进行分析,并执行包含提交的Cookie值的SQL查询。SQL查询是异步执行的,对应用程序的响应没有影响。但是,您可以触发与外部域的带外交互。该数据库包含一个名为users的表,其中的列名为username和password。您需要利用SQL盲目注
- Manus:全球首款通用型 Agent 产品,智能体时代大幕开启
zhz5214
AI人工智能aiAI编程AI写作
Manus,这款由Monica推出的前沿AI产品,凭借独特的创新设计与卓越性能,即将在智能领域引发一场技术变革。流客科技,作为科技领域持续探索创新的品牌,始终关注此类前沿技术突破,深信这样的创新产品将有力推动行业发展。Manus旨在应对复杂多变的任务场景。无论是深入的市场调研、高效精准的文件处理、精心规划的旅行安排,还是专业细致的数据分析,它都展现出强大实力。自主任务规划与执行:Manus能够将复
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- Imagen原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Imagen原理与代码实例讲解1.背景介绍在人工智能领域中,图像生成一直是一个具有挑战性的任务。传统的计算机视觉模型通常专注于理解和分析现有图像,而生成全新的高质量图像则需要更高级的技术。随着深度学习技术的不断发展,生成式对抗网络(GenerativeAdversarialNetworks,GAN)等新型模型逐渐展现出了令人惊叹的图像生成能力。谷歌的Imagen就是一种基于大型视觉语言模型的全新图
- 大数据分析服务器硬件配置如何选择
elva428204358
服务器服务器
大数据,现如今已被人工智能替代。我们先不讨论人工智能,就大数据而言,我们都是在强调他的技术,而我们在用大数据时候,经常用它的来神话它的影响。例如,广告投放精准化,社会安全管理有序,医药行业智能化等。一、建立大数据分析服务器的五个基本方面1、可视化分析:大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,
- 今天全网爆火的Manus到底是什么?Manus的功能与意义深度解析
AndrewHZ
深度学习新浪潮算法深度学习语言模型LLMAIAgentAI智能体Manus
Manus是2025年3月6日由中国团队推出的全球首款通用型AIAgent(智能体),其核心特点是能够自主规划并执行复杂任务,而非仅提供建议或答案。该产品因宣称“知行合一”的能力(如自动生成PPT、分析股票、筛选简历等)迅速引发行业热议,甚至导致官网因流量激增崩溃,邀请码被炒至数万元。一、Manus是什么?功能定位Manus被定义为“通用智能体”,能够通过独立思考调用工具链完成复杂任务,例如:文档
- python Dataframe操作
whale fall
python进阶python开发语言
目录:一、在Dataframe的最后插入一列二、指定Dataframe一列的数据类型三、遍历Dataframe的每一行,为什么修改行里的数据不会同步修改到Dataframe中四、Dataframe删除重复的行五、Dataframe删除列六、Dataframe重排索引七、给Dataframe增加一列,每次遍历给该新增列中的元素赋值八、将字典嵌套列表转换为Dataframe九、Dataframe中at
- MySQL第一次作业
无敌发光大蟒蛇
mysqlandroid数据库
MySQL第一次作业要求:新建产品库mydb6_product,新建4张表如下:employees表列1:id,整型,主健列2:name,字符串,最大长度50,不能为空列3:age,整型列4:gender,字符串,最大长度10,不能为空,默认值“unknown":列5:salary,浮点型orders表列1:id,整型,主键列2:name,字符串,最大长度100,不能为空列3:price,浮点型列
- 四大主流 CRM 系统深度解析:谁才是企业的最佳选择?
wq54wq
大数据人工智能
CRM能够提升客户关系管理效率,通过对客户信息的全面收集和分析,实时跟踪客户活动、需求和偏好,为客户提供个性化服务,增强客户对企业的信任和满意度,进而促进客户的忠诚度和长期稳定的合作关系。同时,CRM系统还能实现销售流程优化,帮助销售团队更好地跟踪销售机会、管理销售线索,制定个性化销售策略,提高销售业绩。此外,它促进跨部门协作,让销售、市场、客服等团队共享客户信息和交流记录,实现全面的客户视图,提
- 使用DeepSeek来构建LangGraph Agent
乔巴先生24
人工智能python人机交互
随着DeepseekR1的发布,我们不得不把目光聚焦在这个能赶超多个顶流大模型的模型身上,它主要是其在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAIo1正式版。为了更好的了解它的性能,我们这篇文章来尝试用它来构建Agent。安装!pipinstall-qopenailangchainlanggraph
- 无监督AI训练:机遇与挑战并存
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
无监督AI训练:机遇与挑战并存关键词:无监督学习、AI训练、机器学习、聚类算法、降维技术、深度学习摘要:本文深入探讨无监督AI训练这一新兴领域,首先介绍了其基本概念与原理,然后详细解析了无监督AI训练的核心技术,如聚类算法和降维技术,以及无监督深度学习。接着,本文通过实际项目案例分析,展示了无监督AI训练的应用实践。最后,本文分析了无监督AI训练面临的挑战,并展望了其未来发展趋势。通过本文的阅读,
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- DeepSeek Agent 企业应用
大势下的牛马
搭建本地gptDeepseekRAGAgent
DeepSeekAgent技术是基于深度求索(DeepSeek)大模型构建的智能代理系统,其核心技术架构与应用优势可从以下几个方面进行深度解析:一、核心技术架构混合专家模型(MoE)与架构优化DeepSeek的模型家族(如DeepSeekMoE、DeepSeek-V3)采用混合专家系统(MoE),通过动态激活不同专家模块提升计算效率。例如,DeepSeekMoE16B在保持较低激活参数(2.8B)
- MMLU 88.5分的海螺minimax-01能平替DeepSeek?程序员:建议再看看
surfirst
LLM人工智能评测
一、背景近期,国产海螺大模型minimax-text-01在AI领域引发广泛关注。这款模型在CoreAcademicBenchmarks上表现亮眼,多项指标名列前茅,甚至被一些自媒体誉为DeepSeek的平替选择。然而,模型的实际应用效果是否与学术评测相符?让我们一起深入探讨。二、minimax-text-01简介minimax-text-01是一个具有4560亿参数量的大规模语言模型,每个tok
- 《DeepSeek+Langchain落地实操:RAG知识增强检索和智能体实战开发》
AI周红伟
langchain
大数据与人工智能实战专家—周红伟老师法国科学院数据算法博士/曾任阿里人工智能专家/曾任马上消费金融风控负责人课程背景LangChain是一项旨在赋能开发人员利用语言模型构建端到端应用程序的强大框架。它的设计理念在于简化和加速利用大型语言模型(LLM)和对话模型构建应用程序的过程。这个框架提供了一套全面的工具、组件和接口,旨在简化基于大型语言模型和对话模型的应用程序开发过程。LangChain本质上
- 【2024】LeetCode HOT 100——技巧
「已注销」
leetcode算法职场和发展
目录1.只出现一次的数字1.1C++实现1.2Python实现1.3时空分析2.多数元素2.1C++实现2.2Python实现2.3时空分析3.颜色分类3.1C++实现3.2Python实现3.3时空分析4.下一个排列4.1C++实现4.2Python实现4.3时空分析5.寻找重复数5.1C++实现5.2Python实现5.3时空分析1.只出现一次的数字原题链接:136.只出现一次的数字只需注意到
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- JSP开发案例教程【5.3】
BinaryStarXin
JSP开发案例教程java数据库开发语言javascriptHibernate和ORM访问MySQL
11.3.1Hibernate和ORM当使用一种面向对象的程序设计语言来进行应用开发时,从项目开始起一直采用面向对象分析、面向对象设计、面向对象编程,但到了持久层数据库访问时,又必须重返关系数据库的访问方式,这是一种非常糟糕的感觉。于是需要一种工具,它可以把关系型数据库包装成面向对象的模型,这个工具就是ORM框架。ORM(ObjectRelationalMapping,对象关系映射)的实现思想就是
- 大模型时代,后端程序员如何避免被AI卷死?
后端go程序员人工智能
我是王中阳,专注帮程序员升职加薪。最近后台收到很多留言:“AI都能写代码了,咱们后端是不是要失业了?”说实话,去年我也慌过。当看到AI能够快速生成代码,甚至某些简单的代码任务完成得比牛马程序员还要出色时,内心的焦虑感油然而生。但后来我通过深入研究和实践发现,这波AI浪潮里藏着巨大的升职加薪机会。今天说点大实话,教你怎么把AI变成涨薪工具。先泼盆冷水:这3类程序员真的危险了只会CRUD的API搬运工
- 旋转编码器原理与应用详解:从结构到实战 | 零基础入门STM32第四十七步
触角01010001
STM32stm32嵌入式硬件单片机
主题内容教学目的/扩展视频旋转编码器电路原理,跳线设置,结构分析。驱动程序与调用。熟悉电路和驱动程序。师从洋桃电子,杜洋老师文章目录一、旋转编码器是什么?二、内部结构揭秘2.1机械组件解剖2.2核心部件说明三、电路工作原理3.1信号生成机制3.2硬件连接方案四、关键技术解析4.1消抖处理4.2方向识别算法五、典型应用场景六、开发板实战演示七、选型注意事项八、相关资源(图1:开发板与旋转编码器连接示
- 了解目标检测:两阶段检测(Two-Stage Detection)、单阶段检测(Single-Stage Detection)和区域建议网络(RPN)
fydw_715
深度学习基础目标检测网络目标跟踪
了解目标检测:两阶段检测(Two-StageDetection)、单阶段检测(Single-StageDetection)和区域建议网络(RPN)在目标检测领域,模型架构在很大程度上决定了模型的性能、速度和应用场景。本文将详细探讨两类主要的目标检测方法——两阶段检测(Two-StageDetection)和单阶段检测(Single-StageDetection),以及它们的核心组件之一:区域建议网
- 大模型时代,什么是tokens?
人工智能
大模型时代,什么是tokens?前言在当今大模型主导的人工智能浪潮中,我们见证了诸多令人惊叹的应用。从精准流畅的语言翻译,到能够根据简单提示创作出富有创意故事的文本生成工具,大模型展现出了强大的能力。然而,在这些复杂且神奇的模型背后,有一个基础而关键的概念——tokens,它犹如大模型世界的基石,支撑着整个模型的运行与发展。理解tokens,对于我们深入认识大模型如何处理信息、优化性能以及合理应用
- 【AI绘画】“木刻时光·细密风”模型发布
bylander
AI学习AI绘画AI作画人工智能深度学习
模型中文名称:木刻时光·细密风模型名称:bylander/woodcutprint_v4模型使用说明:1)在提示词中需要说明”黑白木刻“,对应的英文提示是”woodcutprint,blackandwhite“等字样;2)生成提示词后,使用”提示词优化“的选项,生图效果更好;3)一般一次生成4张,就能挑选出满意的作品;4)如果效果不好,可以调整提示词,目前个人试验,各类场景(神话、日常生活、风景、
- 为什么打开串口的提示窗口都提示两遍
可可乐不加冰
软件报错问题命令模式
问题根源分析在ModbusRTU类中,initializePort方法会在打开串口时通过emitportOpened(true)发送信号。如果MainWindow类中同时通过以下两种方式触发弹窗,就会导致提示重复:直接弹窗:在按钮点击事件中手动调用QMessageBox::information。信号槽弹窗:将portOpened信号连接到另一个显示弹窗的槽函数。解决方案1.移除冗余弹窗逻辑修改M
- [网络安全提高篇] 一二八.恶意软件分析之利用MS Defender实现恶意样本家族批量标注(含学术探讨)
Eastmount
网络安全自学篇web安全恶意软件分析恶意样本家族标注MSDefender
2024新的战场,继续奋斗。“网络安全提高班”新的100篇文章即将开启,包括Web渗透、内网渗透、靶场搭建、CVE复现、攻击溯源、实战及CTF总结,它将更加聚焦,更加深入,也是作者的慢慢成长史。换专业确实挺难的,Web渗透也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~前文介绍了IDAPython配置过程和基础用法,然后尝试提取恶意软件
- 企业用户指南:2024年CRM深度分析
CC_54321
阿里云人工智能
在数字化转型的浪潮中,客户关系管理(CRM)系统已成为企业提升竞争力、优化客户体验的关键工具。本文将深度解析2024年市场上表现最佳的CRM系统,从品牌介绍、产品功能到优势特色,为企业提供全面的选型参考。一、怎样挑选适合企业的CRM?1.明确业务需求在开始寻找CRM系统之前,企业首先需要明确自己的业务需求。这包括:客户管理需求:是否需要追踪客户信息、沟通历史和购买行为销售管理需求:是否需要管理销售
- 构建卓越的客户服务与支持:C# CRM系统深度解析
墨夶
C#学习资料1c#开发语言
在当今竞争激烈的商业环境中,提供优质的客户服务和支持是企业成功的关键之一。一个高效、可靠的客户关系管理(CRM)系统可以帮助企业更好地理解客户需求,提升客户满意度,并最终促进业务增长。本文将深入探讨如何使用C#开发一个功能全面的CRM系统,特别是其中的客户服务与支持模块,我们将详细讲解代码实现,并附上丰富的注释帮助你快速上手。一、需求分析与架构设计为了满足现代企业的多样化需求,我们的CRM系统需要
- 1.3 最优化的基本概念
西瓜毛毛猫
最优化算法
系统分类一般来说,最优化算法研究可以分为:构造最优化模型、确定最优化问题的类型与设计算法、实现算法或调用优化算法软件包进行求解。最优化模型的构造与实际问题息息相关。打个比方,给定二维欧几里得空间的若干个分离点,假定它们可以通过一条直线分成两部分,也可以通过一条曲线分成两部分。那么分别使用直线和曲线所得到的最优化模型是不同的。在前文的问题中,目标函数与约束函数都是由模型来决定的。在确定模型后,我们再
- Doris存储的逻辑架构和物理架构
fzip
Doris数据湖架构Doris
ApacheDoris的存储架构分为逻辑架构和物理架构两个层面,其设计核心围绕数据分布与查询优化展开。以下为详细解析:一、逻辑架构1.表结构分层逻辑表(LogicalTable)用户直接操作的抽象表,支持多种数据模型:明细模型(DuplicateKeyModel):原始数据存储,无预聚合,适合日志类场景。聚合模型(AggregateKeyModel):写入时按维度预聚合(如SUM、COUNT),适
- 网络安全 api 网络安全 ast技术
Hacker_LaoYi
web安全githubgit
随着应用或者API被攻击利用已经越来越多,虽然来自开源组件的漏洞加剧了这一现象的发生,但是,其实主要还是在于应用程序或者API本身没有做好防范,根源在于源代码本身的质量没有严格把控。AST是指ApplicationSecurityTesting,主要包括静态应用测试(SAST)、交互式应用测试(IAST)、动态应用测试(DAST)以及软件成分分析(SCA)等工具。应用测试工具AST是专门用于检测源
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不